System Description: GAPT 2.0

<u>Gabriel Ebner</u> Stefan Hetzl Giselle Reis Martin Riener Simon Wolfsteiner Sebastian Zivota

June 27, 2016

イロト イヨト イヨト イヨト

Motivation

• Computational proof theory

- Classical first-/higher-order logic
- Cut-elimination
- Herbrand disjunctions
- ▶

 \Rightarrow Implementation in a common framework: GAPT

- "General Architecture for Proof Theory"
- Scala library

Applications

Lemma generation

- Example: transitivity in meet-join-lattices.
- Requires:
 - First-order (expansion) proofs
 - SAT/SMT solvers
 - MaxSAT solvers

Cut-elimination by resolution

- Resolution refutation as skeleton of cut-free proof
- Requires:
 - Proof input
 - Resolution proofs
 - Conversion to expansion proofs
 - Visualization

B) Demonstration

<ロ> (日) (日) (日) (日) (日)

Basic functionality

- Formulas, positions, substitution, unification, subsumption, ...
- Parsing
- Export
- Clausification
- . . .

Interfaces to external solvers

System Description: GAPT 2.0

June 27, 2016 7 / 12

Proof systems

 \Rightarrow Classical higher-order logic with equality

Expansion proofs

- \simeq generalized Herbrand-disjunctions
- answer substitutions / witness terms
- Sequent calculus (LK)
- Resolution proofs

• . . .

Operations on proofs

- Conversions
- Tactics (for sequent calculus)
 - Embedded domain-specific language
- Visualization
- Transformations
 - Cut-elimination
 - Minimization
- and more!

Demonstration

э

2

イロト イヨト イヨト イヨト

Future work

- Inductive prover based on tree grammars
- Synthesis by program extraction
- Natural deduction
- Deskolemization
- New solver interfaces: QBF, more SMT theories,
- https://logic.at/gapt