
Complexity of decision problems on TRATGs

Gabriel Ebner
2017-05-25

TU Wien

Totally rigid acyclic tree grammars

Complexity

Cut-reduction

1

TRATGs

Terms, not words.

• Start symbol: A
• Nonterminals: A,B,C,D, . . .

• (Acyclic) productions: B → t[C,D, . . .]

Rigid derivations: A[A\t1][B\t2][C\t3] · · ·

Language L(G) consists of all derivable terms

2

TRATG example

A → f(B,B) | g(B,B)

B → c | d

L(G) = {f(c,c),f(d,d),g(c,c),g(d,d)}

3

TRATG example

A → f(B,B) | g(B,B)

B → c | d

L(G) = {f(c,c),f(d,d),g(c,c),g(d,d)}

3

Totally rigid acyclic tree grammars

Complexity

Cut-reduction

4

Membership

Problem (Membership)
Given a TRATG G and a term t, is t ∈ L(G)?

Claim: Membership is NP-complete.

• Derivations of t are polynomial in the size of t and G.

A, A[A\s1], A[A\s1][B\s2], . . .

Can check in polynomial time whether such a sequence of
terms is a derivation of t in G.

• Hardness: next slide.

5

Membership

Problem (Membership)
Given a TRATG G and a term t, is t ∈ L(G)?

Claim: Membership is NP-complete.

• Derivations of t are polynomial in the size of t and G.

A, A[A\s1], A[A\s1][B\s2], . . .

Can check in polynomial time whether such a sequence of
terms is a derivation of t in G.

• Hardness: next slide.

5

Encoding SAT

The TRATG Satn,m generates the satisfiable 3-CNFs with
n clauses and m variables:

A → and(Clause1, . . . ,Clausen)
Clausei → or(Truei,Anyi,1,Anyi,2)
Clausei → or(Anyi,1,Truei,Anyi,2)
Clausei → or(Anyi,1,Anyi,2,Truei)
Anyi,k → x1 | neg(x1) | · · · | xm | neg(xm) | false | true
Truei → Value1 | · · · | Valuem | true

Valuej → xj | neg(xj)

6

Containment

Problem (Containment)
Given TRATGs G1 and G2, is L(G1) ⊆ L(G2)?

Claim: ΠP2-complete

• In ΠP2 : for every sequence of terms check if it is a
derivation of a term t in G1, and then if t ∈ L(G2).

7

Containment

Problem (Containment)
Given TRATGs G1 and G2, is L(G1) ⊆ L(G2)?

Claim: ΠP2-complete

• In ΠP2 : for every sequence of terms check if it is a
derivation of a term t in G1, and then if t ∈ L(G2).

7

Containment (ΠP
2-hardness)

• Determining the truth of the quantified Boolean formula
∀y1 . . . ∀yk∃x1 . . . ∃xm f is ΠP2-complete.

• Let f be in 3-CNF with n clauses.

• Is fσ satisfiable for any σ : {y1, . . . ,yk} → {true,false}?
• Is {fσ | σ : {y1, . . . ,yk} → {true,false}} ⊆ L(Satn,m)?
• Left side is generated by a TRATG:

A → f[y1\Y1, . . . ,yk\Yk]

Yj → true | false

8

Other problems

Problem (Disjointness)
Given TRATGs G1 and G2, is L(G1) ∩ L(G2) = ∅?

Problem (Equivalence)
Given TRATGs G1 and G2, is L(G1) = L(G2)?

⇒ Disjointness is coNP-complete (via Membership)

⇒ Equivalence is ΠP2-complete (via Containment)

9

Totally rigid acyclic tree grammars

Complexity

Cut-reduction

10

Proofs with Π1-cuts

Definition (simple proof)
We call a proof π in LK simple iff:

• The end-sequent is prenex Σ1
• Cuts have at most a single quantifier, which is prenex
• Quantified cuts are immediately followed by a strong
quantifier rule

11

Cut-reduction to language generation

We assign to every simple proof π a TRATG G(π).

L(G(π)) contains the formulas in a Herbrand sequent of π

• Nonterminals: eigenvariables from cuts + start symbol A
• Productions x→ t for weak quantifier inferences on cut
formulas:

⊢ φ(x)
∀-r⊢ ∀x φ(x)

φ(t) ⊢
∀-l...

∀x φ(x) ⊢
cut

• Productions A → φ(t) for instances of formulas
end-sequent.

12

Herbrand-confluence

Theorem ([Hetzl and Straßburger 2012])

• For every Gentzen cut-reduction sequence π ⇝ π′, we have
L(G(π)) ⊇ L(G(π′)).

• If we did not perform grade reduction on weakenings,
then L(G(π)) = L(G(π′)).

Let ne⇝ be the non-erasing Gentzen cut-reduction relation, i.e.
where we do not reduce weakenings.

We can directly extract tautological Herbrand sequents from
ne⇝-NFs.

⇒ f ∈ H(π∗) iff f ∈ L(G(π)) (for any ne⇝-NF π∗)

13

Corresponding problems for simple proofs

Problem (H-membership)
Let π be a simple proof, and f a formula. Is there a ne⇝-NF
π

ne⇝ π∗ such that f ∈ H(π∗)?

Problem (H-containment)
Let π1, π2 be simple proofs. Are there

ne⇝-NFs πi
ne⇝ π∗

i such that
that H(π∗

1) ⊆ H(π∗
2)?

Problem (H-disjointness)
Let π1, π2 be simple proofs. Are there

ne⇝-NFs πi
ne⇝ π∗

i such that
H(π∗

1) ∩ H(π∗
2) = ∅?

Problem (H-equivalence)
Let π1, π2 be simple proofs. Are there

ne⇝-NFs πi
ne⇝ π∗

i , such that
that H(π∗

1) = H(π∗
2)?

14

Language generation to cut-reduction

Lemma
There is a formula φ(x) such that we can assign to every
grammar G a simple proof πG satisfying H(π∗

G) = φ[L(G)] for
any ne⇝-NF π∗

G.

Set φ(x) := L(x) → L(x).

Let x0, x1, . . . , xn be the nonterminals of G, and
xi → ti,1 | · · · | ti,ki the productions.

⊢ φ(tn,1), . . . , φ(tn,k0)
⊢ ∃x φ(x)

⊢ φ(t0,1), . . . , φ(t0,kn)
⊢ ∃x φ(x)

...
φ(xn) ⊢ ∃x φ(x)
∃x φ(x) ⊢ ∃x φ(x)

cut⊢ ∃x φ(x)

15

Language generation to cut-reduction

Lemma
There is a formula φ(x) such that we can assign to every
grammar G a simple proof πG satisfying H(π∗

G) = φ[L(G)] for
any ne⇝-NF π∗

G.

Set φ(x) := L(x) → L(x).

Let x0, x1, . . . , xn be the nonterminals of G, and
xi → ti,1 | · · · | ti,ki the productions.

⊢ φ(tn,1), . . . , φ(tn,k0)
⊢ ∃x φ(x)

⊢ φ(t0,1), . . . , φ(t0,kn)
⊢ ∃x φ(x)

...
φ(xn) ⊢ ∃x φ(x)
∃x φ(x) ⊢ ∃x φ(x)

cut⊢ ∃x φ(x)
15

Corresponding complexity results for simple proofs

Problem (H-membership)
Let π be a simple proof, and f a formula. Is there a ne⇝-NF
π

ne⇝ π∗ such that f ∈ H(π∗)?

⇒ NP-complete

Problem (H-containment)
Let π1, π2 be simple proofs. Are there

ne⇝-NFs πi
ne⇝ π∗

i such that
that H(π∗

1) ⊆ H(π∗
2)?

⇒ ΠP2-complete

16

Corresponding complexity results for simple proofs

Problem (H-disjointness)
Let π1, π2 be simple proofs. Are there

ne⇝-NFs πi
ne⇝ π∗

i such that
H(π∗

1) ∩ H(π∗
2) = ∅?

⇒ coNP-complete

Problem (H-equivalence)
Let π1, π2 be simple proofs. Are there

ne⇝-NFs πi
ne⇝ π∗

i , such that
that H(π∗

1) = H(π∗
2)?

⇒ ΠP2-complete

17

Conclusion

• We can analyze cut-reduction using tree grammars.

Future work:

• Given a set of terms T and n ≥ 0, is there a TRATG G such
that T ⊆ L(G) with at most n productions?

• NP-complete if G has two nonterminals, otherwise
unknown.

18

	Totally rigid acyclic tree grammars
	Complexity
	Cut-reduction

