Complexity of decision problems on TRATGs

Gabriel Ebner
2017-05-25

TU Wien

Totally rigid acyclic tree grammars

Complexity

Cut-reduction

TRATGs

Terms, not words.

- Start symbol: A
- Nonterminals: A, B, C, D, ...
- (Acyclic) productions: $\mathrm{B} \rightarrow t[\mathrm{C}, \mathrm{D}, \ldots]$

Rigid derivations: $\mathrm{A}\left[\mathrm{A} \backslash t_{1}\right]\left[\mathrm{B} \backslash t_{2}\right]\left[\mathrm{C} \backslash t_{3}\right] \cdots$
Language $L(G)$ consists of all derivable terms

TRATG example

$$
\begin{aligned}
& A \rightarrow f(B, B) \mid g(B, B) \\
& B \rightarrow c \mid d
\end{aligned}
$$

$$
\begin{aligned}
& A \rightarrow f(B, B) \mid g(B, B) \\
& B \rightarrow C \mid d
\end{aligned}
$$

$$
L(G)=\{f(c, c), f(d, d), g(c, c), g(d, d)\}
$$

Totally rigid acyclic tree grammars

Complexity

Cut-reduction

Membership

Problem (Membership)
Given a TRATG G and a term t, is $t \in L(G)$?

Membership

Problem (Membership)
Given a TRATG G and a term t, is $t \in L(G)$?
Claim: Membership is NP-complete.

- Derivations of t are polynomial in the size of t and G.

$$
\mathrm{A}, \mathrm{~A}\left[\mathrm{~A} \backslash s_{1}\right], \mathrm{A}\left[\mathrm{~A} \backslash \mathrm{~s}_{1}\right]\left[\mathrm{B} \backslash \mathrm{~s}_{2}\right], \ldots
$$

Can check in polynomial time whether such a sequence of terms is a derivation of t in G.

- Hardness: next slide.

Encoding SAT

The TRATG Sat ${ }_{n, m}$ generates the satisfiable 3-CNFs with n clauses and m variables:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \text { and }\left(\text { Clause }_{1}, \ldots, \text { Clause }_{n}\right) \\
& \text { Clause }_{i} \rightarrow \text { or }\left(\text { True }_{i}, \text { Any }_{i, 1}, \text { Any }_{i, 2}\right. \text {) } \\
& \text { Clause }_{i} \rightarrow \text { or }\left(\text { Any }_{i, 1}, \text { True }_{i}, \text { Any }_{i, 2}\right) \\
& \text { Clause }_{i} \rightarrow \text { or }\left(\text { Any }_{i, 1}, \text { Any }_{i, 2}, \text { True }_{i}\right) \\
& \operatorname{Any}_{i, k} \rightarrow \mathrm{x}_{1}\left|\operatorname{neg}\left(\mathrm{x}_{1}\right)\right| \cdots\left|\mathrm{x}_{m}\right| \operatorname{neg}\left(\mathrm{x}_{m}\right) \mid \text { false } \mid \text { true } \\
& \text { True }_{i} \rightarrow \text { Value }_{1}|\cdots| \text { Value }_{m} \mid \text { true } \\
& \text { Value }_{j} \rightarrow \mathrm{x}_{\mathrm{j}} \mid \operatorname{neg}\left(\mathrm{x}_{\mathrm{j}}\right)
\end{aligned}
$$

Containment

Problem (Containment)
Given TRATGs G_{1} and G_{2}, is $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?

Containment

Problem (Containment)
Given TRATGS G_{1} and G_{2}, is $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
Claim: Π_{2}^{P}-complete

- In Π_{2}^{P} : for every sequence of terms check if it is a derivation of a term t in G_{1}, and then if $t \in L\left(G_{2}\right)$.

Containment ($\Pi_{2}^{\mathcal{P} \text {-hardness) }}$

- Determining the truth of the quantified Boolean formula $\forall \mathrm{y}_{1} \ldots \forall \mathrm{y}_{k} \exists \mathrm{x}_{1} \ldots \exists \mathrm{x}_{m} f$ is Π_{2}^{P}-complete.
- Let f be in 3-CNF with n clauses.
- Is $f \sigma$ satisfiable for any $\sigma:\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{k}\right\} \rightarrow\{$ true, false $\}$?
- Is $\left\{f \sigma \mid \sigma:\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{k}\right\} \rightarrow\{\right.$ true, false $\left.\}\right\} \subseteq L\left(\right.$ Sat $\left._{n, m}\right)$?
- Left side is generated by a TRATG:

$$
\begin{aligned}
\mathrm{A} & \rightarrow f\left[\mathrm{y}_{1} \backslash \mathrm{Y}_{1}, \ldots, \mathrm{y}_{k} \backslash \mathrm{Y}_{k}\right] \\
\mathrm{Y}_{j} & \rightarrow \text { true } \mid \text { false }
\end{aligned}
$$

Other problems

Problem (Disjointness)
Given TRATGS G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
Problem (Equivalence)
Given TRATGs G_{1} and G_{2}, is $L\left(G_{1}\right)=L\left(G_{2}\right)$?
\Rightarrow Disjointness is coNP-complete (via Membership)
\Rightarrow Equivalence is Π_{2}^{P}-complete (via Containment)

Totally rigid acyclic tree grammars

Complexity

Cut-reduction

Proofs with Π_{1}-cuts

Definition (simple proof) We call a proof π in LK simple iff:

- The end-sequent is prenex Σ_{1}
- Cuts have at most a single quantifier, which is prenex
- Quantified cuts are immediately followed by a strong quantifier rule

Cut-reduction to language generation

We assign to every simple proof π a TRATG $G(\pi)$.
$L(G(\pi))$ contains the formulas in a Herbrand sequent of π

- Nonterminals: eigenvariables from cuts + start symbol A
- Productions $x \rightarrow t$ for weak quantifier inferences on cut formulas:

$$
\begin{aligned}
& \frac{\vdash \varphi(x)}{\vdash \forall x \varphi(x)} \forall-r \quad \frac{\varphi(t) \vdash}{\vdots} \forall-l \\
& \hline \forall x \varphi(x) \vdash \\
& c u t
\end{aligned}
$$

- Productions $\mathrm{A} \rightarrow \varphi(t)$ for instances of formulas end-sequent.

Herbrand-confluence

Theorem ([Hetzl and Straßburger 2012])

- For every Gentzen cut-reduction sequence $\pi \rightsquigarrow \pi^{\prime}$, we have $L(G(\pi)) \supseteq L\left(G\left(\pi^{\prime}\right)\right)$.
- If we did not perform grade reduction on weakenings, then $L(G(\pi))=L\left(G\left(\pi^{\prime}\right)\right)$.

Let $\stackrel{n e}{\rightsquigarrow}$ be the non-erasing Gentzen cut-reduction relation, i.e. where we do not reduce weakenings.

We can directly extract tautological Herbrand sequents from $\stackrel{n e}{\rightsquigarrow}$-NFs.
$\Rightarrow f \in H\left(\pi^{*}\right)$ iff $f \in L(G(\pi)) \quad$ (for any $\stackrel{n e}{\rightsquigarrow}-N F \pi^{*}$)

Corresponding problems for simple proofs

Problem (H-membership)
Let π be a simple proof, and f a formula. Is there a $\stackrel{n e}{\rightsquigarrow-N F}$
$\pi \stackrel{n e}{\rightsquigarrow} \pi^{*}$ such that $f \in H\left(\pi^{*}\right)$?
Problem (H-containment)
Let π_{1}, π_{2} be simple proofs. Are there $\stackrel{n e}{\rightsquigarrow}$-NFs $\pi_{i} \stackrel{n e}{\rightsquigarrow} \pi_{i}^{*}$ such that that $H\left(\pi_{1}^{*}\right) \subseteq H\left(\pi_{2}^{*}\right)$?

Problem (H-disjointness)
Let π_{1}, π_{2} be simple proofs. Are there $\stackrel{n e}{\rightsquigarrow}$-NFs $\pi_{i} \stackrel{n e}{\rightsquigarrow} \pi_{i}^{*}$ such that $H\left(\pi_{1}^{*}\right) \cap H\left(\pi_{2}^{*}\right)=\emptyset$?

Problem (H-equivalence)
Let π_{1}, π_{2} be simple proofs. Are there $\stackrel{n e}{\rightsquigarrow}-N F s \pi_{i} \stackrel{n e}{\rightsquigarrow} \pi_{i}^{*}$, such that that $H\left(\pi_{1}^{*}\right)=H\left(\pi_{2}^{*}\right)$?

Language generation to cut-reduction

Lemma

There is a formula $\varphi(x)$ such that we can assign to every grammar G a simple proof π_{G} satisfying $H\left(\pi_{G}^{*}\right)=\varphi[L(G)]$ for any $\stackrel{n e}{\rightsquigarrow}-N F \pi_{G}^{*}$.

Language generation to cut-reduction

Lemma

There is a formula $\varphi(x)$ such that we can assign to every grammar G a simple proof π_{G} satisfying $H\left(\pi_{G}^{*}\right)=\varphi[L(G)]$ for any $\stackrel{n e}{\rightsquigarrow}-N F \pi_{G}^{*}$.

Set $\varphi(x):=L(x) \rightarrow L(x)$.
Let $x_{0}, x_{1}, \ldots, x_{n}$ be the nonterminals of G, and
$x_{i} \rightarrow t_{i, 1}|\cdots| t_{i, k_{i}}$ the productions.

Corresponding complexity results for simple proofs

Problem (H-membership)
Let π be a simple proof, and f a formula. Is there a $\xrightarrow[\sim]{n}-N F$ $\pi \stackrel{n e}{\sim} \pi^{*}$ such that $f \in H\left(\pi^{*}\right)$?
\Rightarrow NP-complete
Problem (H-containment)
Let π_{1}, π_{2} be simple proofs. Are there $\stackrel{n e}{\rightsquigarrow-N F s} \pi_{i} \stackrel{n e}{\rightsquigarrow} \pi_{i}^{*}$ such that that $H\left(\pi_{1}^{*}\right) \subseteq H\left(\pi_{2}^{*}\right)$?
$\Rightarrow \Pi_{2}^{\text {P-complete }}$

Corresponding complexity results for simple proofs

Problem (H-disjointness)
Let π_{1}, π_{2} be simple proofs. Are there $\stackrel{n e}{\sim}-N F s \pi_{i} \stackrel{n e}{\rightsquigarrow} \pi_{i}^{*}$ such that $H\left(\pi_{1}^{*}\right) \cap H\left(\pi_{2}^{*}\right)=\emptyset$?
\Rightarrow coNP-complete
Problem (H-equivalence)
Let π_{1}, π_{2} be simple proofs. Are there $\stackrel{n e}{\rightsquigarrow}-N F s \pi_{i} \xrightarrow{n e} \pi_{i}^{*}$, such that that $H\left(\pi_{1}^{*}\right)=H\left(\pi_{2}^{*}\right)$?
$\Rightarrow \Pi_{2}^{\text {P }}$-complete

Conclusion

- We can analyze cut-reduction using tree grammars.

Future work:

- Given a set of terms T and $n \geq 0$, is there a TRATG G such that $T \subseteq L(G)$ with at most n productions?
- NP-complete if G has two nonterminals, otherwise unknown.

