Complexity of decision problems on TRATGs

Gabriel Ebner 2017-05-25

TU Wien

Totally rigid acyclic tree grammars

Complexity

Cut-reduction

Terms, not words.

- $\cdot\,$ Start symbol: A
- · Nonterminals: A, B, C, D, \dots
- (Acyclic) productions: $\mathrm{B} \to t[\mathrm{C},\mathrm{D},\dots]$

Rigid derivations: $A[A \setminus t_1][B \setminus t_2][C \setminus t_3] \cdots$ Language L(G) consists of all derivable terms

$$\begin{split} \mathrm{A} &\to \mathsf{f}(\mathrm{B},\mathrm{B}) \mid \mathsf{g}(\mathrm{B},\mathrm{B}) \\ \mathrm{B} &\to \mathsf{c} \mid \mathsf{d} \end{split}$$

$$\begin{split} \mathrm{A} &\to \mathsf{f}(\mathrm{B},\mathrm{B}) \mid \mathsf{g}(\mathrm{B},\mathrm{B}) \\ \mathrm{B} &\to \mathsf{c} \mid \mathsf{d} \end{split}$$

 $L(G) = \{f(c, c), f(d, d), g(c, c), g(d, d)\}$

Totally rigid acyclic tree grammars

Complexity

Cut-reduction

Problem (Membership) Given a TRATG G and a term t, is $t \in L(G)$?

Problem (Membership) Given a TRATG G and a term t, is $t \in L(G)$?

Claim: Membership is NP-complete.

• Derivations of *t* are polynomial in the size of *t* and *G*.

A, A[A \s_1], A[A \s_1][B \s_2], ...

Can check in polynomial time whether such a sequence of terms is a derivation of *t* in *G*.

• Hardness: next slide.

The TRATG $\operatorname{Sat}_{n,m}$ generates the satisfiable 3-CNFs with n clauses and m variables:

$$\begin{split} A &\to \mathsf{and}(\mathrm{Clause}_1, \dots, \mathrm{Clause}_n) \\ \mathrm{Clause}_i &\to \mathsf{or}(\mathrm{True}_i, \mathrm{Any}_{i,1}, \mathrm{Any}_{i,2}) \\ \mathrm{Clause}_i &\to \mathsf{or}(\mathrm{Any}_{i,1}, \mathrm{True}_i, \mathrm{Any}_{i,2}) \\ \mathrm{Clause}_i &\to \mathsf{or}(\mathrm{Any}_{i,1}, \mathrm{Any}_{i,2}, \mathrm{True}_i) \\ \mathrm{Any}_{i,k} &\to \mathsf{x}_1 \mid \mathsf{neg}(\mathsf{x}_1) \mid \dots \mid \mathsf{x}_m \mid \mathsf{neg}(\mathsf{x}_m) \mid \mathsf{false} \mid \mathsf{true} \\ \mathrm{True}_i &\to \mathrm{Value}_1 \mid \dots \mid \mathrm{Value}_m \mid \mathsf{true} \\ \mathrm{Value}_j &\to \mathsf{x}_j \mid \mathsf{neg}(\mathsf{x}_j) \end{split}$$

Problem (Containment) Given TRATGS G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?

Problem (Containment) Given TRATGS G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?

Claim: Π_2^P -complete

• In Π_2^p : for every sequence of terms check if it is a derivation of a term t in G_1 , and then if $t \in L(G_2)$.

Containment (Π_2^P -hardness)

- Determining the truth of the quantified Boolean formula $\forall y_1 \dots \forall y_k \exists x_1 \dots \exists x_m f \text{ is } \Pi_2^p$ -complete.
- Let f be in 3-CNF with n clauses.
- Is $f\sigma$ satisfiable for any $\sigma: \{y_1, \ldots, y_k\} \rightarrow \{\texttt{true}, \texttt{false}\}$?
- Is $\{f\sigma \mid \sigma \colon \{y_1, \ldots, y_k\} \to \{\texttt{true}, \texttt{false}\}\} \subseteq L(\operatorname{Sat}_{n,m})$?
- Left side is generated by a TRATG:

$$A \to f[\mathbf{y}_1 \backslash \mathbf{Y}_1, \dots, \mathbf{y}_k \backslash \mathbf{Y}_k]$$
$$\mathbf{Y}_j \to \texttt{true} \mid \texttt{false}$$

Problem (Disjointness) Given TRATGS G_1 and G_2 , is $L(G_1) \cap L(G_2) = \emptyset$?

Problem (Equivalence) Given TRATGS G_1 and G_2 , is $L(G_1) = L(G_2)$?

 \Rightarrow Disjointness is coNP-complete (via Membership)

 \Rightarrow Equivalence is Π_2^P -complete (via Containment)

Totally rigid acyclic tree grammars

Complexity

Cut-reduction

Definition (simple proof) We call a proof π in LK simple iff:

- \cdot The end-sequent is prenex Σ_1
- $\cdot\,$ Cuts have at most a single quantifier, which is prenex
- Quantified cuts are immediately followed by a strong quantifier rule

We assign to every simple proof π a TRATG $G(\pi)$.

 $L(G(\pi))$ contains the formulas in a Herbrand sequent of π

- Nonterminals: eigenvariables from cuts + start symbol A
- Productions $x \to t$ for weak quantifier inferences on cut formulas:

$$\frac{\varphi(t) \vdash}{\vdots} \forall -l$$

$$\frac{\varphi(t) \vdash}{\vdots} \forall -l$$

$$\frac{\varphi(t) \vdash}{\vdots} \forall -l$$

$$\frac{\varphi(t) \vdash}{\vdots} \forall \varphi(x) \vdash cut$$

• Productions $A \rightarrow \varphi(t)$ for instances of formulas end-sequent.

Herbrand-confluence

Theorem ([Hetzl and Straßburger 2012])

- For every Gentzen cut-reduction sequence $\pi \rightsquigarrow \pi'$, we have $L(G(\pi)) \supseteq L(G(\pi'))$.
- If we did not perform grade reduction on weakenings, then $L(G(\pi)) = L(G(\pi'))$.

Let $\stackrel{ne}{\rightsquigarrow}$ be the *non-erasing* Gentzen cut-reduction relation, i.e. where we do not reduce weakenings.

We can directly extract tautological Herbrand sequents from $\stackrel{ne}{\leadsto}$ -NFs.

 $\Rightarrow f \in H(\pi^*) \text{ iff } f \in L(G(\pi)) \quad (\text{for any } \stackrel{ne}{\leadsto} \text{-NF } \pi^*)$

Problem (H-membership)

Let π be a simple proof, and f a formula. Is there a $\stackrel{ne}{\leadsto}$ -NF $\pi \stackrel{ne}{\leadsto} \pi^*$ such that $f \in H(\pi^*)$?

Problem (H-containment)

Let π_1, π_2 be simple proofs. Are there $\stackrel{ne}{\leadsto}$ -NFs $\pi_i \stackrel{ne}{\leadsto} \pi_i^*$ such that that $H(\pi_1^*) \subseteq H(\pi_2^*)$?

Problem (H-disjointness)

Let π_1, π_2 be simple proofs. Are there $\stackrel{ne}{\leadsto}$ -NFs $\pi_i \stackrel{ne}{\leadsto} \pi_i^*$ such that $H(\pi_1^*) \cap H(\pi_2^*) = \emptyset$?

Problem (H-equivalence)

Let π_1, π_2 be simple proofs. Are there $\stackrel{ne}{\leadsto}$ -NFs $\pi_i \stackrel{ne}{\leadsto} \pi_i^*$, such that that $H(\pi_1^*) = H(\pi_2^*)$?

Lemma

There is a formula $\varphi(x)$ such that we can assign to every grammar G a simple proof π_G satisfying $H(\pi_G^*) = \varphi[L(G)]$ for any $\stackrel{ne}{\leadsto}$ -NF π_G^* .

Lemma

There is a formula $\varphi(x)$ such that we can assign to every grammar G a simple proof π_G satisfying $H(\pi_G^*) = \varphi[L(G)]$ for any $\stackrel{ne}{\leadsto}$ -NF π_G^* .

Set
$$\varphi(x) := L(x) \to L(x)$$
.

Let x_0, x_1, \dots, x_n be the nonterminals of *G*, and $x_i \rightarrow t_{i,1} \mid \dots \mid t_{i,k_i}$ the productions.

Problem (H-membership)

Let π be a simple proof, and f a formula. Is there a $\stackrel{ne}{\leadsto}$ -NF $\pi \stackrel{ne}{\leadsto} \pi^*$ such that $f \in H(\pi^*)$?

 \Rightarrow NP-complete

Problem (H-containment)

Let π_1, π_2 be simple proofs. Are there $\stackrel{ne}{\leadsto}$ -NFs $\pi_i \stackrel{ne}{\leadsto} \pi_i^*$ such that that $H(\pi_1^*) \subseteq H(\pi_2^*)$?

 $\Rightarrow \Pi_2^P$ -complete

Problem (H-disjointness)

Let π_1, π_2 be simple proofs. Are there $\stackrel{ne}{\leadsto}$ -NFs $\pi_i \stackrel{ne}{\leadsto} \pi_i^*$ such that $H(\pi_1^*) \cap H(\pi_2^*) = \emptyset$?

 \Rightarrow coNP-complete

Problem (H-equivalence)

Let π_1, π_2 be simple proofs. Are there $\stackrel{ne}{\leadsto}$ -NFs $\pi_i \stackrel{ne}{\leadsto} \pi_i^*$, such that that $H(\pi_1^*) = H(\pi_2^*)$?

 $\Rightarrow \Pi_2^P$ -complete

• We can analyze cut-reduction using tree grammars.

Future work:

- Given a set of terms T and $n \ge 0$, is there a TRATG G such that $T \subseteq L(G)$ with at most n productions?
 - NP-complete if *G* has two nonterminals, otherwise unknown.