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We present an algorithm to optimally compress a finite set of terms using a vectorial totally rigid acyclic

tree grammar. This class of grammars has a tight connection to proof theory, and the grammar compression

problem considered in this article has applications in automated deduction. The algorithm is based on a

polynomial-time reduction to the MaxSAT optimization problem. The crucial step necessary to justify this

reduction consists of applying a term rewriting relation to vectorial totally rigid acyclic tree grammars. Our

implementation of this algorithm performs well on a large real-world dataset.
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1 INTRODUCTION

Formal grammars are one of the standard tools for text compression, used in several popular al-
gorithms (Storer and Szymanski 1982; Nevill-Manning and Witten 1997; Larsson and Moffat 1999;
Kieffer and Yang 2000). The increased use of XML documents in computer science has fueled the
interest in tree languages, and many compression techniques have been adapted and extended to
provide compact tree representations (Yamagata et al. 2003; Lohrey et al. 2013; Busatto et al. 2008).
Nowadays, the use of tree grammars constitutes a standard technique for compressing XML doc-
uments (Sakr 2009). Grammar-based compression also has the considerable practical advantage
that many operations can be performed directly on the compressed representation (Lohrey 2012).

Such grammar-based algorithms typically compress a single string (or tree). In this article, we
consider the problem of simultaneously compressing a finite set of trees by a vectorial totally rigid
acyclic tree grammar (VTRATG, see Definition 2.1). These VTRATGs describe a class of languages
similar to the one accepted by rigid tree automata introduced in Jacquemard et al. (2009, 2011).
Our motivation for considering this problem is rooted in proof theory and automated deduction:
as shown in Hetzl (2012), there is an intimate relationship between a certain class of proofs in first-
order predicate logic and VTRATGs. This relationship has been exploited in Hetzl et al. (2012) to
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devise an algorithm that analyzes the structure of a given input proof and computes a lemma
whose introduction into the input proof reduces its size. This algorithm has been extended to
the computation of an arbitrary number of lemmas in Hetzl et al. (2014a), to predicate logic with
equality in Hetzl et al. (2014b), and to induction in Eberhard and Hetzl (2015b). The combinatorial
gist of this algorithm is the problem of grammar-based compression considered in this article: a
grammar with a minimal number of production rules will yield a proof with a minimal number of
quantifier inference rules. This tight connection between the complexity of proofs and grammars
has been used in Eberhard and Hetzl (2015a) to prove a lower bound on the length of certain proofs
by proving a lower bound on the size of the corresponding grammars.

The proof-theoretic application of our work entails a shift of emphasis compared to traditional
grammar-based compression in the following two respects: First, we do not have any freedom of
choice regarding the type of grammar. VTRATGs have to be used because they can be translated
to proofs afterward. In order to prevent a trivial solution, we are also looking for a VTRATG
with a fixed number of nonterminals. Second, when compressing a finite set of terms L, we are
looking for a minimal grammar G such that L(G ) ⊇ L instead of reproducing L perfectly. This is
the case because L describes a disjunction that is required to be a tautology (a so-called Herbrand
disjunction, see Herbrand (1930) and Buss (1995)), and if L′ ⊇ L, then L′ also describes a tautology.

Note that the condition L(G ) ⊇ L is similar to (but different from) the one imposed on cover
automata (Câmpeanu et al. 1998, 2001): there an automaton A is sought such that L(A) ⊇ L, but in
addition it is required that L(A) \ L consists only of words longer than any word in L.

Another notion from the literature related to our work is that of the grammatical complexity of
a finite language as defined in Bucher et al. (1981) and studied further in Bucher (1981), Alspach
et al. (1983), Bucher et al. (1984), and Tuza (1987): the grammatical complexity of a finite language
L is defined as the minimal number of productions of a grammar G with L(G ) = L. Each class of
grammars thus gives rise to a measure of descriptional complexity.

In this article, we present an algorithm that finds a compressing grammar that is minimal with
respect to the number of productions. We will precisely formulate this as an optimization problem
in Problem 2.6: the Parameterized Language Cover Problem consists of finding a grammar with
the minimal number of productions that covers the input term set. Algorithm 1 then solves this
problem in the following steps:

(1) Compute a larger grammar that covers the term set and contains a covering subgrammar
of minimal size, in polynomial time.

(2) Produce a MaxSAT problem that encodes the minimization of this large grammar.
(3) Use a MaxSAT solver to obtain a solution to the MaxSAT problem, and return the minimal

VTRATG corresponding to this solution.

In Section 2, we will define VTRATGs and their derivations, and study how language generation
commutes with rewriting in Section 3. We then obtain a specific rewrite relation �L describing
the regularities of a set of terms L in Section 4, and define the so-called stable grammar SN ,L in
Section 5—this is the aforementioned large grammar. The computation of the stable grammar is
described in Section 6, and we describe the encoding of the Grammar Minimization Problem as
an instance of MaxSAT in Section 7. Finally, we evaluate and compare our implementation of the
algorithm on a real-world dataset in Section 8.

2 TREE GRAMMARS

In this section, we will define a special class of tree grammars called vectorial totally rigid
acyclic tree grammars, or VTRATGs for short. These are different from regular tree grammars
(as presented, for example, in Comon et al. (2007)) in two ways: nonterminals are vectors, and
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the derivation relation is highly restricted. (A similar restriction on the derivation relation
was introduced in Jacquemard et al. (2009).) For simplicity, we will define VTRATGs and their
generated languages using iterated substitutions here; these are equivalent to a more classical
approach using restricted derivations, see Hetzl (2012) for the detailed correspondence.

We consider terms t ∈ T (Σ) over a signature Σ of function symbols with arity; constants are
just nullary functions. We write f /n ∈ Σ if the function symbol f has arity n. A vector of terms t =
(t1, . . . , tn ) is a finite sequence of terms. Nonterminals are special variables, and variables are just
nullary function symbols. We will write T (Σ ∪ X ∪ N ) for the set of terms containing variables
from X and nonterminals from N ; the set of constants is always disjoint from the set of variables.

Positions p are finite sequences of natural numbers; Pos(t ) is the set of positions in a term, t |p
is the subterm of t at position p, and t[s]p is the term t where the position p is replaced by another
term s . The set st(t ) = {t |p | p ∈ Pos(t )} is the set of subterms of t . We also define the relations
t � s if and only if t ∈ st(s ), and t � s if and only if t ∈ st(s ) \ {s}. The set of subterms st(L) of a
set of terms L ⊆ T (Σ) is given by st(L) =

⋃
t ∈L st(L). A term t subsumes a term s if there exists a

substitution σ such that tσ = s .

Definition 2.1. Let Σ be a set of function symbols with arity. A VTRATG is given by the tuple
〈α0,0,N , Σ, P〉:

—α0,0 is the start nonterminal.
—N = ((α0,0),α1, . . . ,αn ) is a finite sequence of nonterminal vectors, such that αi =

(αi,0, . . . ,αi,ki
) for each 1 ≤ i ≤ n. The nonterminals are pairwise distinct: αi, j � αk,l if

(i, j ) � (k, l ).
—Σ is the signature of the grammar.
—P is a finite set of vectorial productions. A vectorial production is a pair αi → t , where
αi = (αi,0, . . . ,αi,ki

) ∈ N is a nonterminal vector and t = (t1, . . . , tki
) is a vector of terms

ti ∈ T (Σ ∪ αi+1 ∪ · · · ∪ αn ).

The last condition for the productions states the requirement thatG is acyclic: for each vectorial
production αi → t , the right-hand side t only contains nonterminals from the nonterminal vectors
αi+1, . . . ,αn .

Example 2.2. G = 〈α0,0,N , Σ, P〉 is a VTRATG where

N = ((α0,0), (α1,0,α1,1)),

Σ = { f /3, c/0,d/0, e/0},
P = {(α0,0) → ( f (α1,0,α1,1,α1,1)),

(α0,0) → ( f (α1,1,α1,0,α1,0)),

(α1,0,α1,1) → (c,d )

(α1,0,α1,1) → (d, e )}.

Let X be a set of variables. For a term t , the set Vars(t ) = st(t ) ∩ X is called the set of vari-
ables in t , and the term t is called ground if Vars(t ) = ∅. Variables can be substituted by terms: let
x1, . . . ,xk ∈ X be variables and s1, . . . , sk ∈ T (Σ ∪ X ) be terms, and then a (parallel) substitution
σ = [x1\s1,x2\s2, . . . ,xk\sk ] is a finite map from variables to terms and is extended to all terms
recursively. Each of the terms si may contain any variable, including any of the variables x j . We
write tσ for the application of a substitution σ to a term t . Substitutions are extended to vectors
as well by substituting each element: tσ = (t1σ , . . . , tnσ ). We will also define substitutions using
vectors: [x\t] = [x1\t1, . . . ,xn\tn].
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The right-hand sides of productions are terms in T (Σ ∪ N ). A production substitutes the non-
terminals on the left-hand side by the terms on the right-hand side:

Definition 2.3. LetG = 〈α0,0,N , Σ, P〉 be a VTRATG with the nonterminals N = (α0,α1, . . . ,αn ).
A derivation δ of a term t is a substitution of the form δ = [α0\s0][α1\s1] · · · [αn\sn] such that
α0,0δ = t and αi → si ∈ P is a production for each 0 ≤ i ≤ n. The language L(G ) generated by the
grammar G is the set of all terms of which there is a derivation: L(G ) = {α0,0[α0\s0] · · · [αn\sn] |
αi → si ∈ P }.

A consequence of this definition is that the language L(G ) of a VTRATG does not contain any
nonterminals.

Example 2.4 (Continuing Example 2.2). The VTRATG G generates the four terms L(G ) =
{ f (c,d,d ), f (d, e, e ), f (d, c, c ), f (e,d,d )}; the term f (c,d,d ) ∈ L(G ) has the unique derivation δ =
[(α0,0)\( f (α1,0,α1,1,α1,1))][(α1,0,α1,1)\(c,d )].

Now that we have defined what VTRATGs are, we can precisely state the optimization problem
that we will solve in this article:

Definition 2.5. Let G = 〈α0,0,N , Σ, P〉 be a VTRATG. Its size |G | = |P | is the number of its pro-
ductions.

This notion of size corresponds to the one used by Bucher et al. (1981).

Problem 2.6 (Parameterized Language Cover Problem). Given a finite set of terms L and a se-
quence of nonterminal vectors N , find a VTRATG G of minimal size with nonterminal vectors N
such that L(G ) ⊇ L.

If L(G ) ⊇ L, then we will say that G covers L. The parameter in the Parameterized Language
Cover Problem refers to the sequence of nonterminal vectors N . If we do not keep this parameter
fixed, then the reduction presented in this article will no longer be polynomial time. Furthermore,
if we allow arbitrarily large N , then the Language Cover Problem would become trivial as every
set of terms would have optimal exponential compression:

Theorem 2.7 (Eberhard and Hetzl 2017). Let L be a finite set of terms and l0, . . . , ln be natural

numbers such that |L| ≤ ∏i li . Then there exists a VTRATG G of size |G | = ∑i li such that L(G ) = L.

In particular, for every set of terms L of size |L| ≤ 2n there exists a covering VTRATG of size 2n.
Due to the restriction on N , the Parameterized Language Cover Problem we consider here is not
trivially solvable.

From a complexity point of view, we can also consider a decision version of the Parameterized
Language Cover Problem: given a finite set of terms L, a sequence of nonterminal vectors N , and
a bound n > 0, does there exist a VTRATG G with nonterminal vectors N such that L(G ) ⊇ L and
|G | ≤ n? This problem lies in NP: given a VTRATG G and derivations of all the terms in the term
set, we can check in polynomial time whether |G | ≤ n, the derivations are all correct, and the
VTRATG actually covers the set of terms. It is unknown at the present time whether this problem
is already NP-complete, although we conjecture that it is.

The notion of VTRATG originates in the proof-theoretic applications of Hetzl (2012), Hetzl
et al. (2014b), Hetzl et al. (2014b), and Ebner et al. (2017): there the set of terms L corresponds to
the weak quantifier inferences in a cut-free proof, and finding a covering VTRATG determines
the weak quantifier inferences in a proof with universally quantified cuts. Furthermore, there is
a tight connection between the size of the VTRATG and the quantifier complexity of the proof
with cuts: they are bounded by constant factors. Each of the nonterminal vectors corresponds
to a cut in the proof. The length of each nonterminal vector determines the number of universal
quantifiers in the cut formula.
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3 REWRITING GRAMMARS

The goal of this section is to show that term rewriting and language generation commutes; that is,
instead of applying a rewriting relation to a grammar and then generating the language, we can
also generate the language from the original grammar and apply the rewriting to the language.
(Note that the rewrite relation we will be using is nonconfluent and that the results of rewriting
are therefore not deterministic.)

Following Dershowitz and Plaisted (2001), we axiomatically define a (single-step) rewrite rela-
tion as binary relation that is closed under substitution and congruence.

Definition 3.1. Let→R be a binary relation on T (Σ ∪ X ). Then→R is called monotonic if s →R t
impliesu[s]p →R u[t]p for all s, t ,u ∈ T (Σ ∪ X ) andp ∈ Pos(u). It is called fully invariant if s →R t
implies sσ →R tσ for all s, t ∈ T (Σ ∪ X ) and substitutions σ . It is called a rewrite relation if it is
both monotonic and fully invariant.

We will now show how to lift the rewriting from terms to productions, to derivations, to gram-
mars, and then describe the effect the rewriting has on the generated language. For the rest of the
section, let→R be a fixed rewrite relation and→∗R its reflexive and transitive closure. (After this
section, we will only consider the specific rewrite relation→R =→∗R = �L , see Definition 4.2.)

Definition 3.2. Let L ⊆ T (Σ ∪ X ∪ N ) be a set of terms, G = 〈α0,0,N , Σ, P〉 and G ′ =

〈α0,0,N , Σ, P
′〉 be VTRATGs, p = (αi → s ) ∈ P , p ′ = (αi → s ′) ∈ P ′ be productions, and δ =

[α0\s0][α1\s1] · · · [αn\sn], δ ′ = [α0\s ′0][α1\s ′1] · · · [αn\s ′n] be derivations.
We extend rewriting on terms to sets, derivations, productions, and grammars in the natural

way as follows:

—L →∗R L′ if and only if for all t ′ ∈ L′ there exists a t ∈ L such that t →∗R t ′ and for all t ∈ L
there exists a t ′ ∈ L′ such that t →∗R t ′.

—δ →∗R δ ′ if and only if si, j →∗R s ′i, j for all i and j.

— (αi → s ) →∗R (αi → s ′) if and only if sj →∗R s ′j for all j.

—G →∗R G ′ if and only if for all p ′ ∈ P ′ there exists a p ∈ P such that p →∗R p ′ and for all p ∈ P
there exists a p ′ ∈ P ′ such that p →∗R p ′.

The following two easy lemmas allow us to move rewriting out of the right-hand side of a
production and to the end of a derivation, respectively:

Lemma 3.3. Let t be a term and [x\s] a substitution. If si →∗R s ′i for all i , then t[x\s]→∗R t[x\s ′].

Proof. This follows from the fact that→∗R is monotonic and reflexive-transitive. �

Lemma 3.4. Let σ be a substitution and t , t ′ terms. If t →∗R t ′, then tσ →∗R t ′σ .

Proof. The result is clear for single-step rewritings and then extends to the transitive
closure. �

Using these two lemmas, we can now lift rewriting to derivations:

Lemma 3.5. Let δ ,δ ′ be derivations such that δ →∗R δ ′. Then α0,0δ →∗R α0,0δ
′.
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Proof. Let δ = [α0\s0][α1\s1] · · · [αn\sn] and δ ′ = [α0\s ′0][α1\s ′1] · · · [αn\s ′n]. We will now iter-

atively change the derivation δ to δi = [α0\s ′0] · · · [αi−1\s ′i−1][αi\si ] · · · [αn\sn] while maintaining
the invariant that δ →∗R δi . At step i , we rewrite the substitution [αi\si ]. First we apply Lemma 3.3:

α0,0[α0\s ′0] · · · [αi−1\s ′i−1][αi\si ]

→∗R α0,0[α0\s ′0] · · · [αi−1\s ′i−1][αi\s ′i ].
And then we apply Lemma 3.4:

α0,0[α0\s ′0] · · · [αi−1\s ′i−1][αi\si ][αi+1\si+1] · · · [αn\sn]

→∗R α0,0[α0\s ′0] · · · [αi−1\s ′i−1][αi\s ′i ][αi+1\si+1] · · · [αn\sn].

At the end δn = δ ′ and we have δ →∗R δ ′. �

We can now prove that rewriting a grammar changes the generated language by rewriting as
well:

Theorem 3.6. Let G = 〈α0,0,N , Σ, P〉 and G ′ = 〈α0,0,N , Σ, P
′〉 be VTRATGs. If G →∗R G ′, then

L(G ) →∗R L(G ′).

Proof. Let α0,0δ ∈ L(G ). Since G →∗R G ′, there exists a derivation δ ′ in G ′ such that δ →∗R δ ′.
By Lemma 3.5, α0,0δ →∗R α0,0δ

′ ∈ L(G ). On the other hand, let α0,0δ
′ ∈ L(G ′). By a symmetric ar-

gument, there exists a δ such that α0,0δ ∈ L(G ) and α0,0δ →∗R α0,0δ
′. Thus, L(G ) →∗R L(G ′). �

In contrast to this result on rewriting VTRATGs, there is no corresponding result for regular
tree grammars. There are important differences: VTRATGs only produce finite languages and
we are concerned with the preservation of size, while for regular tree grammars the question is
whether the resulting infinite language can be generated at all. However, the results of Gascón
et al. (2009) suggest a correspondence: they show that the language obtained by rewriting a
regular tree language can be recognized by a tree automaton with equality and disequality
constraints. A VTRATG where every nonterminal vector has length 1 can also be recognized by
a tree automaton with equality constraints of similar size.

4 STABLE TERMS

The set of terms L that we would like to cover often has some regularity. We will make use of
this regularity to simplify grammars using a rewrite relation �L derived from L. This rewrite re-
lation consists of all the transformations that keep every subterm of L intact. We then obtain a
characterization of the fully simplified grammars—those are called stable grammars.

Example 4.1. The following set of terms L has some obvious regularities: the first and second
arguments of f are always the same, and in addition the third argument is always e:

L = { f (c, c, e ), f (d,d, e )}.
This VTRATG G = 〈α0,0,N , Σ, P〉 covers L without making use of these regularities:

N = ((α0,0), (α1,0), (α2,0), (α3,0))

Σ = { f /3, c/0,d/0, e/0}
P = {(α0,0) → ( f (α1,0,α2,0,α3,0)),

(α1,0) → (c ), (α1,0) → (d ),

(α2,0) → (c ), (α2,0) → (d ),

(α3,0) → (e )}.
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Clearly the right-hand side of the production (α0,0) → ( f (α1,0,α2,0,α3,0)) is unnecessarily
general; we could have simplified it to f (α1,0,α1,0, e ) (thus saving two nonterminals and three
productions).

Definition 4.2. Let L be a set of terms and t , t ′ be any terms. Then t �L t ′ if and only if tσ ∈ st(L)
implies tσ = t ′σ for all substitutions σ . We also define the strict relation �L by: t �L t ′ if and only
if t �L t ′ and t ′ �L t .

Example 4.3. For L = { f (c, c, e ), f (d,d, e )}, we have f (x ,y, e ) �L f (x ,x , e )—this expresses the
fact that the first two arguments to f are always equal in L. But also, less meaningful statements
such as c �L c are true, or even f ( f (x ,y, e ), z, e ) �L c . It is not the case that f (x ,y, e ) �L f (c, c, e ),
as σ = [x\d,y\d] is a counterexample: we have f (x ,y, e )σ = f (d,d, e ) ∈ st(L), but f (x ,y, e )σ =
f (d,d, e ) � f (c, c, e ) = f (c, c, e )σ .

It follows via routine arguments that �L is a preorder and �L a strict partial order.

Lemma 4.4. Let L be a set of terms, and then the relation �L is a rewrite relation.

Proof. Let s and t be such that s �L t . For monotonicity, we need to show that u[s]p �L u[t]p

for all u and p. So let σ be such that u[s]pσ ∈ st(L). Then clearly sσ ∈ st(L) as well, so we have
sσ = tσ , and thus u[s]pσ = u[t]pσ .

To show that �L is fully invariant, we need to show that sσ �L tσ for all σ . So let τ be such that
(sσ )τ ∈ st(L), and then clearly s (στ ) ∈ st(L) and sστ = tστ by assumption. �

Let→ ∈ A ×A be a binary relation on a setA. An element t is called a normal form with respect
to the relation→ if there is no s such that t → s , that is, if it cannot be reduced using→.

Simplifying a production corresponds to taking normal forms under �L . Recall that the set of
nonterminals is by definition a subset of the set of variables; in particular, f (α1,0,α2,0,α3,0) is not
a ground term. The reason we are nevertheless considering more variables than just nonterminals
in this section is twofold: first, we need a larger number of variables (since the number of nonter-
minals is bounded). Second, they are conceptually different—we can always rename the variables
in these transformations, while this is not possible in productions.

Definition 4.5. A term t is said to be stable if t is in normal form with respect to �L . The set S (L)
consists of all stable terms.

For a stable term t there exists no term s such that t �L s .

Example 4.6. Let L = { f (c, c, e ), f (d,d, e )}, and then the terms f (z, z, e ) and c are stable, but
f (x ,y, e ) is not.

Example 4.7. We can now simplify the grammar from Example 4.1: there we had the produc-
tion (α0,0) → ( f (α1,0,α2,0,α3,0)). If we apply f (x ,y, e ) �L f (x ,x , e ) to the right-hand side of this
production, we obtain the production (α0,0) → ( f (α1,0,α1,0, e )), as promised.

Lemma 4.8. Let L be a set of terms and t ∈ S (L). Then t subsumes a subterm of L.

Proof. If L is empty, then s �L r for any terms s and r . Hence, S (L) = ∅, a contradiction to
t ∈ S (L). So let L be nonempty, witnessed by t0 ∈ L. Assume toward a contradiction that t subsumes
no subterm of L. Since tσ � st(L) for any substitution σ , we have t �L z, where z is a fresh variable.
We also have z �L t , since z[z\t0] � t[z\t0] even though z[z\t0] = t0 ∈ L. Hence, t �L z and t �
S (L). �

Example 4.9. Looking at L = {h( f (c, c, e )),h( f (d,d, e ))}, we see that f (z, z, e ) ∈ S (L) subsumes
f (c, c, e ) � h( f (c, c, e )) ∈ L, and д(c ) � S (L) does not subsume any subterm of L.
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We will use the relation �L to simplify VTRATGs that cover L. Recall that when rewriting a
grammar, the generated language is rewritten using the same relation by Theorem 3.6. But if we
rewrite using �L , then any term in L remains unchanged:

Lemma 4.10. Let L be a set of terms, and then L ⊆ S (L).

Proof. Let t ∈ L. We need to show that t ∈ S (L) as well. Assume toward a contradiction that
t �L s , and let σ be the identity substitution. Then tσ = t ∈ L ⊆ st(L) and hence t = tσ = sσ = s ,
a contradiction. �

Let→ ⊆ A ×A be a binary relation. Then an a ∈ A is called a normal form if there is no b ∈ A
such that a → b. The relation→ is called weakly normalizing if for every a ∈ A there is a normal
form a′ ∈ A such that a →∗ a′, where →∗ denotes the reflexive-transitive closure of →. We will
now show that �L is weakly normalizing, from which we can then conclude that we can rewrite
every term into a stable term.

Lemma 4.11. Let L be a set of terms and t �L s . If t subsumes a subterm of L, then s subsumes that

subterm as well, and Vars(t ) ⊇ Vars(s ).

Proof. Let σ be a substitution such that tσ = r ∈ st(L). By definition of t �L s , we then have
tσ = sσ = r . For the second property, assume toward a contradiction that x ∈ Vars(s ) \ Vars(t ).
Let z1 � z2 be two distinct variables. Consider the substitutions σi = [x\zi ]σ for i ∈ {1, 2}. We have
tσ1 = tσ2 = r ∈ st(L) but sσ1 � sσ2, and hence tσ1 � sσ1 or tσ2 � sσ2, in contradiction to t �L s . �

Theorem 4.12. Let L � ∅ be a set of terms, and then �L is weakly normalizing.

Proof. Let t be a term. We need to show that there exists a term s such that t �L s and s �L r for
any term r . If t does not subsume a subterm of L, then we have t �L t ′ for any t ′ ∈ L ⊆ S (L) � ∅.
Hence, assume without loss of generality that t subsumes a subterm r ∈ st(L). If t is a normal form
of �L , then we are done. Otherwise, by Lemma 4.11, for any term s such that t �L s , it is the case
that s subsumes r as well, and Vars(s ) ⊆ Vars(t ). Since there are only finitely many such terms and
�L is transitive and irreflexive, at least one such term s is a normal form of t . �

The following result is crucial to our approach: we want to rewrite grammars into a form that
we can effectively search for—namely, those grammars where all productions are stable. Hence,
we need to show that we can rewrite every term into a stable term:

Corollary 4.13. Let L � ∅ be a set of terms and t a term. Then there exists a term t ′ ∈ S (L) such

that t �L t ′.

Proof. Take any �L-normal form of t . �

5 STABLE GRAMMARS

Being able to rewrite grammars allows us to transform any grammar until all right-hand sides of
productions are stable or, seen differently, to transform any grammar into a subgrammar of the
grammar consisting of all stable productions—without increasing its size. The resulting subgram-
mar still covers the input term set: by Theorem 3.6, the language is rewritten with �L , but by
Lemma 4.10, �L keeps every t ∈ L unchanged!

Definition 5.1. Let L be a set of ground terms and N = (α0, . . . ,αi ) be a sequence of nonterminal
vectors. Then the stable grammar SN ,L = 〈α0,0,N , Σ, P〉 contains all productions with stable right-
hand sides:

P = {αi → s | si ∈ S (L) for all i}.

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 26. Publication date: September 2017.



Algorithmic Compression of Finite Tree Languages by Rigid Acyclic Grammars 26:9

If L is finite, then SN ,L has only finitely many productions: by Lemma 4.8, all right-hand sides of
productions in SN ,L subsume subterms of L, and there are only finitely many terms in T (Σ ∪ N )
that are smaller than some term in L (comparing the number of positions). Hence, SN ,L is a well-
defined and finite grammar. In Corollary 6.14, we will even see that SN ,L is only polynomially
larger than L for fixed N .

Definition 5.2. LetG1 = 〈α0,0,N , Σ, P〉 andG2 = 〈α ′0,0,N ′, Σ′, P ′〉 be VTRATGs.G1 is a subgram-

mar of G2, written G1 ⊆ G2, if P ⊆ P ′, α0,0 = α ′0,0, N = N ′, Σ = Σ′.

We can now prove the main result about the stable grammar SN ,L :

Theorem 5.3. LetG = 〈α0,0,N , Σ, P〉 be a VTRATG and L a set of terms such that L ⊆ L(G ). Then

there exists a VTRATG G ′ = 〈α0,0,N , Σ, P
′〉 such that:

(1) G �L G ′

(2) G ′ ⊆ SN ,L

(3) |G ′ | ≤ |G |
(4) L ⊆ L(G ′)

Proof. Let P ′ be the set of productions that is obtained by �L-rewriting the right-hand side of
each production in P to a stable term; this is possible by Corollary 4.13. We haveG �L G ′ andG ′ ⊆
SN ,L . Since this rewriting does not increase the number of productions, we also have |G ′ | ≤ |G |.
Let t ∈ L ⊆ L(G ). By Theorem 3.6, there is a t ′ ∈ L(G ′) such that t �L t ′. But t is in L ⊆ S (L), so
t ′ = t . Hence, t ∈ L(G ′), and therefore, L ⊆ L(G ′). �

Corollary 5.4. Let L be a finite set of terms and N a sequence of nonterminal vectors. Then the

VTRATG SN ,L contains a subgrammar H ⊆ SN ,L of minimal size covering L.

6 COMPUTING ALL STABLE TERMS

in Section 7, we will minimize the grammar SN ,L in order to produce a solution for the Param-
eterized Language Cover Problem. Hence, we need to compute SN ,L . Let N = (α0, . . . ,αn ) be a
sequence of nonterminal vectors, and k0, . . . ,kn be the lengths of these vectors; then the right-
hand side of a production in SN ,L may contain up to k1 + · · · + kn different nonterminals.

The right-hand sides of the productions in SN ,L are therefore included in the subset of S (L) of
terms with at most k1 + · · · + kn variables (recall that nonterminals are variables). In this section,
we will show how to compute this subset from L. To this end, we will characterize stable terms
as generalizations of the least general generalizations with injective matching. Substitutions are
injective if and only if we cannot express one variable in terms of the others:

Lemma 6.1. Let σ be a substitution. Then σ is injective on T (Σ ∪ X ) if and only if uσ � xσ for all

variables x ∈ X and terms u such that Vars(u) ⊆ X \ {x }.
Proof. If there are u and x such that uσ = xσ , then clearly σ is not injective. For the converse,

we prove that tσ = sσ implies t = s by induction on t : if t is a variable, we distinguish three cases:
the first case is t � Vars(s ), and here we have a contradiction to the assumption. The second (trivial)
case is t = s . In the third case, both t � s and t ∈ Vars(s ), and then t is a strict subterm of s , a
contradiction to tσ = sσ . If s is a variable, a symmetric argument applies.

If now t and s are both functions, we have two cases: first, if t and s share the same root symbol,
then t |iσ = s |iσ for all arguments, and hence t |i = s |i by the inductive hypothesis, and t = s by con-
gruence. Second, if t and s have different root symbols, then already tσ = sσ is a contradiction. �

The subsumption relation � is a preorder on the set of all terms T (Σ ∪ X ). Every preorder in-
duces an equivalence relation where t ≈ s if and only if t � s and s � t . In the subsumption order,
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two terms are equivalent if they differ only by variable renaming. If t , s are terms without com-
mon variables, and σ their most general unifier, then t ∨ s = tσ = sσ is their supremum. The dual
operation is called least general generalization (sometimes also “anti-unifier”) and was introduced
independently in Plotkin (1970), Plotkin (1971), and Reynolds (1970).

Definition 6.2. The least general generalization t ∧ s of two terms t and s can be computed re-
cursively, where x (t , s ) is a different variable for each pair (t , s ):

f (t1, . . . , tn ) ∧ f (s1, . . . , sn ) = f (t1 ∧ s1, . . . , tn ∧ sn )

f (t1, . . . , tn ) ∧ д(s1, . . . , sm ) = x ( f (t1, . . . , tn ),д(s1, . . . , sm )) if f � д.

Example 6.3. f (c, c, e ) ∧ f (d,d, e ) = f (x ,x , e ).

Note that the least general generalization is only unique up to variable renaming, and we will
often choose the variables to be fresh. As an infimum of terms in the subsumption preorder, the
least general generalization satisfies t ∧ s ≈ s ∧ t , (t ∧ s ) ∧ r ≈ t ∧ (s ∧ r ), and also t ∧ s � t for all
terms t , s, r . Since the least general generalization is associative-commutative, we will also write∧

L for the least general generalization of a set of terms L.

Definition 6.4. Let t , s ∈ T (Σ ∪ X ) be terms such that t subsumes s . We define s/t as the unique
substitution such that t (s/t ) = s , and x (s/t ) = x for all x ∈ X \ Vars(t ).

The substitution s/t is often called a matching from t to s . With this definition, we can now
proceed to characterize the stable terms: in Theorem 6.6, we will show that t ∈ S (L) if and only
if the matching to

∧
Lt is injective on T (Σ ∪ Vars(t )), where Lt is the set of subterms of L that t

subsumes. We will then prove an even stronger result: it suffices to only consider bounded subsets
of Lt , where the bound only depends on the number of variables in t . Since there are only poly-
nomially many such bounded subsets, we will be able to effectively use this characterization to
compute the stable terms with a bounded number of variables in Theorem 6.13.

Lemma 6.5. Let T ⊆ T (Σ) be a nonempty set of ground terms and r , s ∈ T (Σ ∪ X ). Let u =
∧
T ,

and for every t ∈ T , let πt := t/u. If rπt = sπt for all t ∈ T , then r = s .

Proof. By induction on r . Similar to Lemma 6.1, the critical case is when r is a variable and
r � Vars(s ). If r � Vars(u), then r = rπt for all t and hence s is necessarily a variable as well. When
additionally s ∈ Vars(u), we can choose two terms t and t ′ such that sπt � sπt ′ , a contradiction to
sπt = sπt ′ = r . Otherwise, s � Vars(u) and s = sπt = rπt = r with any t .

Assume on the other hand that r ∈ Vars(u). We already handled the case that s is a variable, so
we can assume that s = f (s1, . . . , sn ). Choose terms t and t ′ such that rπt and rπt ′ have a different
root function symbol. One of the root symbols is different from f , a contradiction. �

Theorem 6.6. Let L be a set of ground terms and t a term that subsumes a subterm of L, and assume

Vars(t ) ∩ Vars(
∧

Lt ) = ∅. Then t ∈ S (L) if and only if σ = (
∧

Lt )/t is injective on T (Σ ∪ Vars(t )).

Proof. First, we show that t ∈ S (L), assuming thatσ is injective. Let s be any term such that t �L

s . For every r ∈ Lt let πr := r/
∧

L. We have tσπr = r ∈ st(L), and tσπr = sσπr by assumption. By
Lemma 6.5, we obtain tσ = sσ , and hence t = s by injectivity of σ , and thus t �L s and t ∈ S (L).

In order to show that σ is injective, we apply Lemma 6.1 and have x ,u such that xσ = uσ and
x ∈ Vars(t ) \ Vars(u). First, we have t[x\u] �L t because of Lemma 4.11. We will now show that
t �L t[x\u], which contradicts t ∈ S (L) since t[x\u] �L t . Let τ be a substitution such that tτ ∈
st(L), and then tτ ∈ Lt as well, and there exists a substitution ρ such that τ = σρ. We can now
compute t[x\u]τ = t[x\u]σρ = tσρ = tτ , where [x\u]σ = σ because the variables in u and the
domain of σ are disjoint. �
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Theorem 6.7. Let L be a set of ground terms, and t ∈ S (L). Then there exists a subset L′ ⊆ Lt such

that σ ′ = (
∧

L′)/t is injective on T (Σ ∪ Vars(t )) and |L′ | ≤ |Vars(t ) | + 1.

Proof. We construct L′ in stages: we will define a sequence of L0 ⊆ L1 ⊆ · · · ⊆ Ln = L′ such
that |Li | ≤ i + 1. In each step, we have a substitution σk = (

∧
Lk )/t , and in the end σ ′ = σn . First,

pick a term s0 ∈ Lt and set L0 = {s0}, and then we have tσ0 = s0. We can now order the variables
x1, . . . ,xn in t in such a way that xiσ0 � x jσ0 implies i < j.

By Lemma 6.1, it will suffice to show that xiσ
′ � rσ ′ for any xi and r such that xi � Vars(r ).

Note that due to symmetry, we can assume without loss of generality that if r = x j is a variable as
well, then j < i . Furthermore, if the disequality xiσk � rσk already holds for some σk , then it also
holds for σ ′ since σk = σ ′(

∧
Lk/
∧

L′).
In step i , we now ensure that there is no r such that xiσi = rσi and xi � Vars(r ), and j < i in the

case that r = x j is a variable. Assume that there is such an r with xiσi−1 = rσi−1 (otherwise, we
can set Li = Li−1). With these restrictions, we can show that this r is unique: let r ′ � r be another
such term, and then we have rσi−1 = r

′σi−1. Similar to Lemma 6.1, we can assume that at least
one of r or r ′ is a variable. If r = x j and r ′ = xk are both variables, then without loss of generality
j < k < i , and hence xkσi−1 = x jσi−1 is a contradiction to the inductive hypothesis. If r is a function
and r ′ = x j is a variable (or vice versa), then x jσi−1 = rσi−1 is also a contradiction.

Now there is a unique r such that xiσi−1 = rσi with the previous restrictions. We have t �L

t[xi\r ] because of t ∈ S (L) and Lemma 4.11. Hence, there exists a substitution τ such that tτ ∈ st(L)
and tτ � t[xi\r ]τ . Furthermore, tτ ∈ Lt and xiτ � rτ . Set Li = Li−1 ∪ {tτ }. Now τ = σi (tτ/

∧
Li )

and hence xiσi � rσi . �

Example 6.8. Consider L = { f (д(a),д(a), e ), f (д(b),д(b), e ), f (д(c ),д(c ), e )}. The term t =
f (x ,x , e ) is in S (L), and hence the substitution σ = [x\д(y)] is injective, where tσ =

∧
Lt =

f (д(y),д(y), e ). But since t has only one free variable, there is a subset L′ ⊆ Lt with the same prop-
erty and at most 1 + 1 elements: for example, L′ = { f (д(c ),д(c ), e ), f (д(d ),д(d ), e )}. The ground
term t2 = f (д(c ),д(c ), e ) has zero variables, and hence there is a subset L′2 ⊆ L with at most 0 + 1
elements such t2σ

′
2 =
∧

L′2. This set L′2 is necessarily the singleton L′2 = {t2}.

Our strategy for computing stable terms will be to compute all terms t such that σ is injective,
where tσ = L′ for some subset L′ ⊆ st(L). We enumerate all subsets of st(L′) of the bounded size
given by Theorem 6.7, and then infer the stable term t from L′ by generalization. However, in
general, there exists more than one term t that has an injective substitution σ satisfying tσ =

∧
L′:

for example, with L′ = { f ( f (c )), f ( f (d ))}, all of the terms x , f (x ), and f ( f (x )) have an injective
substitution to

∧
L′.

Let m : T (X ∪ Σ) → X be a partial function from terms to variables. Then Rm : T (X ∪ Σ) →
T (X ∪ Σ) denotes the replacement function that replaces all occurrences of the terms in the do-
main ofm by the corresponding variables.

Example 6.9. Recall that the terms x , f (x ), and f ( f (x )) are all in S (L), where L =
{ f ( f (c )), f ( f (d ))}. Letm1 = { f ( f (y))) �→ x },m2 = { f (y) �→ x }, andm3 = {y �→ x }. If we consider
the least general generalization

∧
L = f ( f (c )) ∧ f ( f (d )) = f ( f (y)), then we can obtain the three

stable terms from it using Rmi
: Rm1 (

∧
L) = x , Rm2 (

∧
L) = f (x ), and Rm3 (

∧
L) = f ( f (x )).

If a partial functionm is injective, its inversem−1 = {(s �→ t ) | (t �→ s ) ∈m} is a partial function
as well. Ifm : X → Y is a partial function and Z ⊆ X is a subset of its domain, thenm � Z = {(s �→
t ) | (s �→ t ) ∈m ∧ s ∈ Z } is the restriction ofm to Z .

Since terms are equivalent modulo variable renaming in the subsumption order, in the fol-
lowing lemmas we will assume without loss of generality that the variables in the least general
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generalization
∧

L are distinct from the variables in X . The following lemma now shows how
least general generalizations and stable terms relate:

Lemma 6.10. Let k ∈ T (Σ ∪ X ) and kσ =
∧

L, where σ is injective on T (Σ ∪ X ). Then k =
R (σ�X )−1 (

∧
L).

Proof. Follows homomorphically from R (σ�st(k ))−1 (rσ ) = r for all r ∈ st(k ) ∩ X . �

Example 6.11. Let L = { f (д(c )), f (д(d ))}, ∧L = f (д(y)), and k = f (x ). Then kσ =
∧

L for σ =
[x\д(y)] and indeed R {д (y ) �→x } ( f (д(y))) = f (x ).

We now have enough constraints on stable terms to enumerate all of them (with a given
bound on the number of variables) in polynomial time by simply applying all possible replace-
ments to all least general generalizations. However, this would also produce many terms that
are not stable if we use replacements that correspond to noninjective substitutions. For ex-
ample, take L = { f (c, e ), f (d, e )}, k = f (x , e ) =

∧
L � L, and X = {y, z}. Using the replacement

m = (σ � X )−1 = {x �→ y, e �→ z}, we can obtain the term Rm ( f (x , e )) = f (y, z), which is not in
S (L).

Hence, it is important to check that the substitutions are injective:

Lemma 6.12. Let σ be a substitution and X a set of variables. Then we can decide in polynomial

time whether σ is injective on T (Σ ∪ X ).

Proof. We define a binary predicate s on variables and terms:

s (x , t ) :↔ ∃u ∈ T (Σ ∪ X \ {x }), uσ = t .

This predicate can be computed recursively:

s (x , t ) =
⎧⎪⎪⎨⎪⎪⎩

� if yσ = t for some y � x
s (x , t1) ∧ · · · ∧ s (x , tn ) if t = f (t1, . . . , tn )
⊥ otherwise.

By Lemma 6.1, σ is injective if and only if ∀x ∈ X ¬s (x ,xσ ). The runtime of s is quadratic in the
size of t and X , and we iterate it for every x ∈ X ; hence, it has polynomial runtime in X and σ . �

We can now give the algorithm that computes the stable terms and prove its correctness. The
runtime of the algorithm depends on the symbolic complexity |L|s of the set of terms L: the sym-
bolic complexity is the sum of the number of positions of each term in L.

Theorem 6.13. Let L be a set of ground terms and X a set of variables, and then the set of all terms

k ∈ S (L) such that Vars(k ) ⊆ X can be computed as follows:

(1) For each subset L′ ⊆ st(L) such that |L′ | ≤ |X | + 1:

(2) Compute
∧

L′.
(3) For each injective partial functionm : st(

∧
L′) → X :

(4) Check thatm−1 is injective on T (Σ ∪ X ).
(5) Then output k = Rm (

∧
L′).

The runtime of this procedure is bounded by a polynomial in |L|s for fixed |X |.

Proof. Let us first show the correctness of the algorithm, that is, that it does indeed generate
exactly the terms k ∈ S (L) such that Vars(k ) ⊆ X . Assume that k is such a term. Then, by
Theorem 6.6, there exists an injective substitution σ such that kσ =

∧
Lk . By Theorem 6.7,

we then have an L′ ⊆ Lk such that |L′ | ≤ |k | + 1 ≤ |X | + 1 and the substitution σ ′ such that
kσ ′ =

∧
L′ is injective as well. By Lemma 6.10, the injective partial function m := (σ � st(k ))−1
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satisfies k = Rm (
∧

L′). Hence, the algorithm outputs k . On the other hand, every term in the
output is in S (L) by Theorem 6.6.

In step (1), there are at most st(L)
|X |+1

= O ( |L| |X |+1
s ) possible subsets; in step (3), there are at most

|L|s positions in
∧

L′ and hence at most O ( |L| |X |+1
s ) partial functions σ . Computing least general

generalizations and replacements is linear in the input, and checking injectivity is also polynomial
due to Lemma 6.12; therefore, the total runtime is polynomial in |L|s . �

Corollary 6.14. Let a sequence of nonterminals N be fixed. Then the grammar SN ,L is

polynomial-time computable from a finite set of ground terms L.

Proof. apply Lemma 6.13 to X = N . �

7 MINIMIZATION

In Corollary 6.14, we have produced a polynomial-time computable VTRATG SN ,L that is guar-
anteed to contain a subgrammar H covering L of minimal size. In particular, this subgrammar H
solves the Parameterized Language Cover Problem for L and N . Since we can efficiently compute
SN ,L , we have reduced the Parameterized Language Cover Problem to the Grammar Minimization
Problem:

Problem 7.1 (Grammar Minimization Problem). Given a VTRATG G and a finite set of ground
terms L ⊆ L(G ), find a subgrammar H ⊆ G of minimal size such that L ⊆ L(H ).

We will reduce this problem to MaxSAT by giving a propositional formula expressing the prop-
erty that the subgrammar H covers L. MaxSAT is an optimization variant of the Boolean satis-
faction problem (SAT), for which a number of efficient off-the-shelf solvers exist; see the yearly
MaxSAT competition (Argelich et al. 2008) for a list of solvers. In this article, we only consider the
partial and unweighted variant of MaxSAT and simply call it MaxSAT:

Problem 7.2 (MaxSAT). Given two sets of propositional clauses H and S (so-called “hard” and
“soft” clauses), find an interpretation I such that I |= H and I maximizes the number of satisfied
clauses in S .

We will encode “H covers L” by stating for each t ∈ L that “there exists a derivation δt of t inH .”
The concrete encoding of “δt is a derivation of t inH” is based on a sparse encoding of the function
αi, j �→ αi, jδt , that is, encoding the function as a binary relation. One important observation about
this function is that it usually returns only subterms of t . For example, consider the following
derivation:

δ = [α0,0\f (α1,0,α1,0)][α1,0\d].

In this case, t = α0,0δ = f (d,d ), and α1,0δ = d is indeed a subterm of t . However, this subterm
property can fail in the presence of “unused” nonterminals, for example:

δ2 = [α0,0\f (α1,0,α1,0)][α1,0\d,α1,1\c].

Again, t = α0,0δ2 = f (d,d ) and α1,0δ2 = d are subterms, but now α1,1δ2 = c is not a subterm of
f (d,d ). If αi, jδ is not a subterm of t , it will turn out to be irrelevant to the derivation, and hence
we will ignore it and assign the dummy term ⊥ to all such terms that are not subterms of t . This
allows us to consider the smaller range st(t ) ∪ {⊥} for the function δ .

Definition 7.3 (Propositional encoding for t ∈ L(H )). Let G be a VTRATG and t a ground term.
We use the following atoms:

—αi, jδt = r , where αi, j is a nonterminal and r ∈ st(t ) ∪ {⊥} a ground term.
—p ∈ P ′, where p ∈ P is a production.
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We define the following abbreviations for formulas:

αiδt = r ≡
∧

j

αi, jδt = r j .

MatchG,t (u, s ) ≡
⎧⎪⎪⎨⎪⎪⎩

� if u = ⊥
β1δt = r1 ∧ · · · ∧ βkδ = rk if s[β1\r1, . . . , βk\rk ] = u
⊥ otherwise.

CaseG,t (i,u) ≡ αiδt = u →
∨

αi→s ∈P

��
�
αi → s ∈ P ′ ∧

∧
j

MatchG,t (uj , sj )
	

�
.

FuncG,t ≡
∧
i, j

��
�

∨
s ∈st(t )∪{⊥}

αi, jδt = s ∧
∧

s1�s2∈st(t )∪{⊥}
¬(αi, jδt = s1 ∧ αi, jδt = s2)	


�
.

GenTermG,t ≡ α0,0δt = t ∧ FuncG,t ∧
∧

i

∧
s ∈(st(L)∪⊥)ki

CaseG,t (i, s ).

The formula MatchG,t (u, s ) encodes sδt = u, extending the αi, jδt = u atom to arbitrary terms
s . In order to ensure the correctness of the whole encoding, we have to add implied constraints
for each possible function value of δt and for each nonterminal vector αi : the CaseG,t (i,u) for-
mula encodes these constraints. Then FuncG,t states that δ : N → st(t ) ∪ {⊥} is a function, and
GenTermG,t combines the other formulas to encode that δ is a derivation of t using only the
productions from the subset P ′ ⊆ P , that is, those that are present in H .

Example 7.4. Consider t = f (c, c, e ), N = {((α0,0), (α1,0)}, and G = 〈α0,0,N , Σ, P〉 with the fol-
lowing productions P = {p1,p2,p3,p4}:

p1 = (α0,0) → ( f (α1,0,α1,0,α1,0)) p3 = (α1,0) → (c )

p2 = (α0,0) → ( f (α1,0,α1,0, e )) p4 = (α1,0) → (d ).

Then we encode t ∈ L(H ) using the following formula GenTermG,t (slightly simplified proposi-
tionally):

CaseG,t (0, f (c, c, e )) ≡ α0,0δt = f (c, c, e ) → (p2 ∈ P ′ ∧ α1,0δt = c )

CaseG,t (0, c ) ≡ α0,0δt = c → ⊥
CaseG,t (0, e ) ≡ α0,0δt = e → ⊥

CaseG,t (0,⊥) ≡ α0,0δt = ⊥ → �
CaseG,t (1, f (c, c, e )) ≡ α1,0δt = f (c, c, e ) → ⊥

CaseG,t (1, c ) ≡ α1,0δt = c → (p3 ∈ P ′)
CaseG,t (1, e ) ≡ α1,0δt = e → ⊥

CaseG,t (1,⊥) ≡ α1,0δt = ⊥ → �

GenTermG,t ≡ α0,0δt = f (c, c, e ) ∧ FuncG,t ∧
∧
i,s

CaseG,t (i, s ).

Many of the formulas of CaseG,t (i, s ) are of the form (· · · → ⊥); these correspond to derivations
that are impossible: for example, we have α0,0δt = c → ⊥ because there is no production from
(α0,0) that has c as the root symbol. In this example, GenTermG,t entails p2 ∈ P ′ ∧ p3 ∈ P ′, and
hence, any covering subgrammar H ⊆ G necessarily includes these two productions; the minimal
covering subgrammar consists precisely of these two productions.
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Lemma 7.5. Let G = 〈α0,0,N , Σ, P〉 be a VTRATG, H = 〈α0,0,N , Σ, P
′〉 ⊆ G a subgrammar of G,

and t a term. Then, for every derivation δ of t in H , there exists a satisfying interpretation I |=
GenTermG,t such that for all p ∈ P , I |= p ∈ P ′ if and only if p ∈ P ′.

Conversely, if I |= GenTermG,t is a satisfying interpretation such that for all p ∈ P , I |= p ∈ P ′ if

and only if p ∈ P ′, then there exists a derivation of t in H .

Proof. We need to construct a satisfying interpretation I for every derivation δ in H . So we
would like to set I |= αi, jδt = r if and only if αi, jδ = r ; but this could fail if r is not a subterm of t .
But the following assignment only results in ⊥ or subterms of t , as required:

I |= αi, jδt = r ⇔
{
r = αi, jδ if αi, j is a subterm of t
r = ⊥ otherwise.

It remains to verify that I |= CaseG,t (i, s ) for all i and s , that is, I |= MatchG,t (αi, jδt , si, j ) for all
j, where αi → si is the chosen production in δ . This is trivial if αi, jδ is not a subterm of t—then
MatchG,t (αi, jδt , si, j ) expands to �; in the other case, it is clear from the definition of a derivation.

Conversely, let I be a satisfying interpretation for GenTermG,t such that I |= p ∈ P ′ if and only
ifp ∈ P ′. We will now construct an actual derivation δ inH such that α0,0δ = t . By FuncG,t , there is
a unique value for each αi, jδt in I ; let ti, j ∈ st(t ) ∪ {⊥} be terms such that I |= αi, jδt = ti, j . Choose
the productions αi → si for δ such that I |= αi → si ∧

∧
j MatchG,t (ti, j , si, j ). This immediately en-

sures that δ really is a derivation in the subgrammar.
We will now verify that ti, j � ⊥ implies αi, jδ = ti, j for all i and j by backward induction on i:

if ti, j � ⊥, then MatchG,t (ti, j , si, j ) ≡
∧

l βlδ = rl . Because the nonterminals in si, j can only be of
the form αi′, j′ with i ′ > i , computing αi, jδ first substitutes αi, j with si, j , and then each βl with rl ,
since βlδ = rl per induction hypothesis. Now since t0,0 = t � ⊥, we conclude that δ is a derivation
of α0,0δ = t . �

So far we have only considered the encoding for the derivability of a single term t ; we will now
turn to derive multiple terms.

Theorem 7.6. The Grammar Minimization Problem is polynomial-time reducible to MaxSAT.

Proof. LetG = 〈α0,0,N , Σ, P〉 be the VTRATG, and L ⊆ L(G ) the set of terms. We need to find a
subset P ′ ⊆ P of minimal size such that the grammarH = 〈α0,0,N , Σ, P

′〉 still satisfies L ⊆ L(H ). By
Lemma 7.5, any interpretation I satisfying

∧
t ∈L GenTermG,t corresponds to a covering VTRATG.

Set the hard clauses of the MaxSAT problem to a CNF of this formula. (Such a CNF can be obtained
in polynomial time as shown in Tseitin (1983).)

For each production p ∈ P , we add the soft clause ¬(p ∈ P ′). The number of satisfied soft clauses
is then exactly |P | − |P ′ |, the number of productions not included in the minimized VTRATG. Maxi-
mizing the number of soft clauses then minimizes the number of productions in the VTRATG given
by the interpretation. From a solution I to this MaxSAT problem, we obtain the minimal covering
VTRATG by setting P ′ = {p | I |= p ∈ P ′}, which is the corresponding subgrammar according to
Lemma 7.5. �

8 EXPERIMENTAL RESULTS

We have evaluated our implementation of Algorithm 1 on a real-world collection of 19,104 term
sets, called the TSTP dataset. If we recall our proof-theoretic motivation for the Parametric Lan-
guage Cover Problem, we extract term sets from cut-free proofs, and if we can find a covering
grammar, then we can introduce cuts or lemmas into the cut-free proof. In this fashion, we have
extracted term sets from the TSTP collection of proofs produced by automated theorem provers
(Thousands of Solutions from Theorem Provers (Sutcliffe 2010)). Unfortunately, many of these

ACM Transactions on Computational Logic, Vol. 18, No. 4, Article 26. Publication date: September 2017.



26:16 S. Eberhard et al.

ALGORITHM 1: Solution of the Parameterized Language Cover Problem via MaxSAT

Input: Set of ground terms L and a sequence of nonterminals N .

Output: Minimal VTRATG H with nonterminals N such that L ⊆ L(H ).

G = stableGrammar(N , L)

φ = minimizationFormula(G, L)

I = maxSatSolver(φ, softClauses(G))

H = grammarFromAssignment(I )

proofs are in custom formats that we have been unable to import. However, from the total 137,989
proofs in the TSTP, we could import term sets from 36,494 proofs (26.45%). Of these 36,494 term
sets, 17,390 (47.65%) cannot be compressed using VTRATGs as each term has a different root sym-
bol. The remaining 19,104 term sets are the TSTP dataset.

The performance of Algorithm 1 is compared to the so-called delta-table algorithm (see Hetzl
et al. (2014b)), which is to our knowledge the only other algorithm that can produce VTRATGs. The
delta-table algorithm has two major limitations: First, it only produces grammars with nontermi-
nals N = ((α0,0),α1). Depending on a parameter of the delta-table algorithm, either |α1 | = 1 or |α1 |
is determined by the algorithm. Since Algorithm 1 requires an upfront choice of N , we will com-
pare both algorithms with the only common parameter setting, that is, |α1 | = 1,N = ((α0,0), (α1,0)).
The other limitation is that the delta-table algorithm does not always produce minimal
grammars.

We compared the implementation of these two algorithms in a prerelease version of
GAPT1 2.0 (Ebner et al. 2016) and used GNU parallel (Tange 2011) for scheduling. The MaxSAT
solver we used is OpenWBO version 1.3.0 (Martins et al. 2014). The performance comparison was
conducted on a Debian Linux system with an Intel i5-4570 CPU and 8GiB RAM.

Within a timeout of 60 seconds per term set, the delta-table algorithm finds grammars for 6,873
term sets. Algorithm 1 improves on this and finds grammars for 7,503 term sets. This is a significant
improvement, since the additional 630 term sets are the most difficult instances solved, even though
they only account for a 9% increase in solutions. Figure 1 shows a cactus plot illustrating the CPU
runtime of both algorithms: a cactus plot2 shows all the term sets that can be compressed within
a given timeout; the runtimes are sorted, and beginning from left to right, the runtime for the nth
fastest term set is plotted on the y-axis.

For easy term sets—those that take a short time to compress—the delta-table algorithm is faster;
there the curve for the delta-table algorithm is below the one for Algorithm 1. As far as we can
tell, the performance difference on the easy examples is due to the overhead of constructing the
stable grammar and the minimization formula. On average, this reduction makes up for 72% of
the runtime for term sets where the total runtime is less than 1 second, whereas the situation is
almost reversed for term sets where the total runtime is more than 10 seconds: there about 69% of
the runtime is spent inside the MaxSAT solver.

This dichotomy between easy and hard problems is apparent not only on the aggregate dataset
but also for individual term sets: Figure 2 shows the CPU runtime ratio (x-axis) in comparison to
the compression ratio (y-axis) and total runtime (size of the points). On the top right there is a
cluster of small points: these are the easy problems, and while the delta-table algorithm is faster
by a factor of 10, both algorithms can solve the problems in a reasonable time. Then there is a large

1The implementation is open source and available at https://logic.at/gapt.
2Cactus plots have been popularized by the SAT community to visualize the performance of different solvers on a bench-

mark set, and have also been adopted by competitions in other communities.
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Fig. 1. Runtime of the delta-table algorithm and Algorithm 1 on the TSTP dataset.

Fig. 2. Comparison of the performance difference to the compression ratio and overall runtime. Each point

represents an input term set from the TSTP dataset. The size of a point is proportional to the combined

runtime of both algorithms.

cluster on the left: these are the hard problems, which generally admit a better compression, and
here Algorithm 1 is faster by a factor of 100.

In Figure 3, we then see the extent of how many more grammars are found by Algorithm 1:
while it was previously infeasible with the delta-table algorithm to compress large term sets or
obtain good compression, Algorithm 1 can not only compress much larger term sets but also find
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Fig. 3. Runtime performance comparison with the delta-table algorithm. As in Figure 2, each point represents

an input term set, and its size is proportional to the runtime of each algorithm.

grammars with better compression. Of particular note are the small points on the bottom left: these
mean that Algorithm 1 was able to find grammars with a high compression (10× ) for relatively
large term sets (consisting of about 300 terms).

9 CONCLUSION

In this article, we have presented a practically efficient algorithm for compressing a finite tree
language by a VTRATG with a fixed sequence of nonterminals. This Parameterized Language
Cover Problem is the combinatorial gist of the lemma generation technique introduced in Hetzl
et al. (2012) and further extended in Hetzl et al. (2014a), Hetzl et al. (2014b), and Ebner et al.
(2017). The mathematical key insight is that there is a polynomial-time computable VTRATG
that contains a minimal grammar as a subgrammar. This allows the polynomial reduction of
the grammar compression problem to a MaxSAT problem for which highly efficient solvers are
available.

The algorithm presented in this article has been integrated into our implementation (Ebner
et al. 2016) of these lemma generation techniques. It considerably improves the simple algorithm
introduced in Hetzl et al. (2014b) and treats a larger class of formal proofs including that considered
in Hetzl et al. (2014a). The implementation also contains extensions of this algorithm for other
types of grammars, such as the ones developed in Eberhard and Hetzl (2015b) describing a certain
class of inductive proofs.

In principle, this algorithm could be adapted to any class of grammars that are closed under
rewriting. We are also investigating how to extend the algorithm to other notions of grammar size:
Eberhard and Hetzl (2017) introduce the tree complexity measure, which precisely corresponds to
the number of weak quantifier inferences in a proof. The MaxSAT-reduction in Section 7 could
be extended to other classes of grammars or automata as well, for example, to find tree automata
with a fixed number of states and minimal number of transitions that accept a given finite set of
terms. It is not yet clear how to extend the reduction to cover infinite sets of terms.
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