The Lean Theorem Prover

Gabriel Ebner

2017-09-18

TU Wien

If you want to follow along:

- https://leanprover.github.io/download
- https://github.com/gebner/avm2017_tutorial

Lean

Tutorial

Conclusion

The Lean Theorem Prover

- Interactive theorem prover
- · Started in 2013, major rewrite in 2016
- Primarily developed by Leonardo de Moura (Microsoft)
- · Big group at CMU around Jeremy Avigad
- https://leanprover.github.io/
- · Open Source

Logical foundations

- Dependent type theory
 - · Variant of the Calculus of Inductive Constructions
- · Small kernel
 - Only basic inductive types and structural recursion
 - · Well-founded recursion, etc., defined on top
- · Proofs can be independently checked
 - · 3 independent type-checkers
 - $\cdot \sim$ 1500 lines of code

Type theory

Dependent type theory is beautiful. Everything is a term:

- Formulas
- Proofs
- Terms
- · Types
- Programs
- Tactics

Definitions, recursion/induction, etc. work uniformly on them.

Syntax

- · Dependent pattern-matching
- Type classes
- · Coercions
- · Inductive data types & structures (records)
- Do-notation (monads)
- Default arguments
- · Call-by-name arguments
- Custom operators

Proof automation

- Type-class inference
 - · General back-chaining solver
- Simplifier
 - · (Conditional) term rewriting system
- Congruence closure (modulo AC)
- Unit propagation
- Heuristic instantiation (E-matching)
 - "SMT tactics"

Meta-programming features

- · Fast virtual machine
- Profiler
- Debugger
- Efficient meta-programming
- · Tactics implemented in Lean
- User-extensible syntax

Interactive features

- · Plugins for Emacs and VS Code
 - · and for Vim, and an online editor
- · Immediate checking
- Go-to-definition, etc.
- · Parallel and incremental compilation

Lean

Tutorial

Conclusion

Tutorial

https://github.com/gebner/avm2017_tutorial

Lean

Tutorial

Conclusion

Coming soon

- Native compilation
- · Automation for arithmetic
- Macros and refactoring
- Special-purpose automation
 - · Bit-blasting
 - Presburger arithmetic

Further material

- Three online tutorials:
 https://leanprover.github.io/documentation/
- Reference manual: https://leanprover.github.io/reference/
- Gitter chat: https://gitter.im/leanprover_public/Lobby
- Mailing list: https://groups.google.com/d/forum/lean-user