
Extracting expansion trees from resolution
proofs with splitting and definitions?

Gabriel Ebner

TU Wien

Abstract. We present a new and efficient algorithm to translate proofs
generated by resolution-based automated theorem provers into expansion
proofs—a formalism for Herbrand disjunctions for non-prenex formulas.
In contrast to previous approaches, this algorithm supports definition-
introducing structural clausification and Avatar-style splitting inferences.

1 Introduction

Herbrand’s theorem [7,3] captures the fundamental insight in logic that the va-
lidity of a quantified formula is characterized by the existence of a tautological
finite set of quantifier-free instances. In its simplest case, the validity of a purely
existential formula is characterized by the existence of a tautological disjunction
of instances, a Herbrand disjunction.

Expansion trees were introduced in [14] to generalize this result to higher-
order logic in the form of simple type theory. In first-order logic, they provide
a technically convenient formalism to store these tautological instances of non-
prenex formulas.

The fundamental importance of Herbrand’s theorem is underlined by the
variety of its applications. Herbrand disjunctions directly contain the answer
substitutions of logic programs. Luckhardt [13] used them to give a polynomial
bound for Roth’s theorem. Grammar-based compression of expansion proofs
has been used to introduce non-analytic quantified lemmas [10,9,8,5], and prove
theorems with induction in [4].

Particularly for the last two applications it is vitally important to efficiently
generate expansion proofs using automated theorem provers. Algorithms to trans-
late automatically generated resolution proofs to expansion proofs have already
been proposed in the context of the TPS [16] and GAPT [11] systems.

The approach in [11] transforms a resolution refutation first into a sequent
calculus proof with atomic cuts, and then extracts an expansion proof in a second
step; Skolemization is not handled in the algorithm and is instead treated as a
preprocessing step of the formula.

More closely related to the approach in this paper is the algorithm in [16]:
it directly transforms a resolution refutation into an expansion proof. Skolem-
ization is handled explicitly during the translation, and Skolem terms are au-
tomatically converted to variables. However this treatment has two unfortunate

? Supported by the Vienna Science and Technology Fund (WWTF) project
VRG12-004

2 Gabriel Ebner

consequences: first, only outer Skolemization can be used in this way—and this
conflicts with the goal to reduce the number of Skolem functions and the num-
ber of the arguments, which is necessary for efficient proof search. Additionally,
the deskolemization is incompatible with built-in equational inferences which
implicitly make use of congruences for Skolem functions.

Both of the approaches require a naive distributivity-based transformation
of the input formula into clause normal form (CNF), which can increase the size
of the problem exponentially. Moreover, neither approach can handle splitting
inferences as used by SPASS [21] or Vampire [20].

The solution we present in this paper includes clausification and splitting
steps as inferences of the resolution proof in a similar way as higher-order reso-
lution calculi [1], conveniently keeping track of introduced subformula definitions
for structural clausification and Skolem functions in the same data structure as
the resolution refutation. Concretely, we present the following:

– We describe an algorithm that directly transforms resolution proofs with
integrated clausification inferences into expansion proofs, supporting inner
Skolemization and also Skolemization in the presence of equality rules.

– We show how to support Avatar-style splitting inferences.
– We show how to handle subformula definitions in this transformation.

In Sections 3 and 4 we describe the resolution and expansion proof cal-
culi used, respectively. Basic operations on expansion proofs, merge- and cut-
reduction, are introduced in Section 4 as well. Section 5 then explains the extrac-
tion of expansion proofs from resolution proofs. The resulting expansion proofs
may still contain definitions if the resolution proof contains subformula defini-
tions. These definitions are then eliminated in Section 6. Finally in Section 8 we
evaluate the performance and clausification quality of an implementation of this
algorithm.

2 Preliminaries

We work in first-order logic with equality. A quantifier-free formula is called
quasi-tautological iff it is valid in first-order logic with equality—that is, if it
becomes a tautology by adding congruence and reflexivity axioms for the =
relation. In the terminology of SMT solvers, quasi-tautologies are the QF_UF-
valid formulas.

A sequent Γ ` ∆ is a pair of two multisets, the antecedent Γ and the succe-
dent ∆. Unless stated otherwise sequents contain formulas, but we will also
consider sequents containing other objects. Clauses are sequents of atoms. We
usually use the names a, b, c for constants, x, y, z for variables, t, s, r for terms,
ϕ,ψ for formulas, A,B for atoms, E for expansion trees, and S for sequents.
We define composition of sequents as (Γ ` ∆) (Π ` Λ) = (Γ ∪ Π ` ∆ ∪ Λ),
prepending an element to the antecedent as ϕ +: (Γ ` ∆) = (Γ ∪ {ϕ} ` ∆),
appending an element to the succedent as (Γ ` ∆) :+ ϕ = (Γ ` ∆ ∪ {ϕ}), and
concatenating sequents as (Γ ` ∆) ++ (Π ` Λ) = (Γ ∪Π) ` (∆ ∪ Λ).

Extracting expansion trees with splitting and definitions 3

Given a formula or term e, the set FV(e) consists of the free variables of e.
For sequences of terms e1, . . . , en we use the vector notation e, this notation is
also used for blocks of quantifiers, i.e. ∀x ϕ means ∀x1 · · · ∀xn ϕ. Substitutions
are written as [x\t] or [x\t], meaning a capture-avoiding parallel substitution of
the variables x by the terms t.

3 Resolution proofs

As a calculus for resolution proofs we consider a first-order variant of Andrew’s
system R [1], extended with inferences to support subformula definitions and
Avatar splitting. The inferences in this calculus operate on sequents. Let ϕ be
the closed formula that is to be proven, a resolution proof then starts with the
sequent ϕ ` (using the Input inference) and ends with the empty sequent `.

Resolution proofs can be roughly divided into an upper part starting with
ϕ ` that performs clausification inferences, and a lower part that ends with `
and represents the actual proof search with resolution, rewriting, factoring, and
other inferences. There is no implicit unification in the inferences, substitution
is handled explicitly using an extra inference.

Both Skolemization and subformula definition inferences make use of global
dictionaries that store the interpretation of the defined atoms and Skolem func-
tions, respectively. Defined atoms and Skolem functions are fresh symbols that

do not occur in the problem. For definitions, the entry D(x)
def7→ ψ means that

the atom D(x) is defined to by ψ, that is, ∀x (D(x) ↔ ψ) is true. For Skolem

functions, the entry s(x)
sk7→ ∀y ϕ[y] means that s(x) is the Skolem term used to

instantiate ∀y ϕ[y], that is, ∀x (ϕ[s(x)]→ ∀y ϕ[y]) is true. We use both relations

also for substitution instances of the definitions, i.e. we write D(t)
def7→ ψ[x\t] as

well as s(t)
sk7→ (∀y ϕ[y])[x\t]. Furthermore, we require these definitions to be

acyclic.
For reasons of space, we only show inferences for the connectives >,¬,∧,∀

here. This is not a restriction since the other connectives can be defined in terms
of these. We will use the analogous rules for the other connectives in examples.

Clausification inferences:

Input
ϕ `

>, Γ ` ∆
TopL

Γ ` ∆
¬ϕ, Γ ` ∆

NegL
Γ ` ∆,ϕ

Γ ` ∆,¬ϕ
NegR

ϕ, Γ ` ∆

ϕ ∧ ψ, Γ ` ∆
AndL

ϕ,ψ, Γ ` ∆
Γ ` ∆,ϕ ∧ ψ

AndR1
Γ ` ∆,ϕ

Γ ` ∆,ϕ ∧ ψ
AndR2

Γ ` ∆,ψ
Γ ` ∆,∀x ϕ

AllR
Γ ` ∆,ϕ

∀x ϕ, Γ ` ∆
AllL (where t

sk7→ ∀x ϕ)
ϕ[x\t], Γ ` ∆

Subformula definition inferences:

Γ ` ∆,ϕ
AbbrL

Γ ` ∆,D(t)
DefR

D(t) ` ϕ (where D(t)
def7→ ϕ)

4 Gabriel Ebner

Logical inferences:

Γ ` ∆,A A,Π ` Λ
Res

Γ,Π ` ∆,Λ
Γ ` ∆,A,A

Factor
Γ ` ∆,A

Γ ` ∆
Subst

Γσ ` ∆σ

Taut
A ` A

Γ ` ∆, t = s A[t], Π ` Λ
Rw

A[s], Γ,Π ` ∆,Λ
Refl` t = t

Avatar splitting inference:

S1 ++ S2 AvSplitS1 :+D
(where D

def7→ ∀x S2 and FV(S1) ∩ FV(S2) = ∅)

The AvSplit inference here is the minimal version necessary to represent
Avatar splitting. The calculus in [20] uses A-clauses, where an A-clause ¬a1 ∨
· · · ∨ ¬am ∨ b1 ∨ · · · ∨ bn ← C1, . . . , Ck is a pair of a clause and an assertion,
which is a finite set of clauses called “components”. Each clause C that occurs
in an assertion has an associated propositional atom [C]. In the calculus here,
we represent A-clauses by combining the assertion and the clause part into a
single clause [C1], . . . , [Ck], a1, . . . , an ` b1, . . . bn. The distinction between the
assertion and non-assertion part of the clauses is important for proof search, but
is not relevant to the transformation here.

During proof search, splitting takes a clause S1++S2 that can be partitioned
into two (or more) clauses S1 and S2 with pairwise disjoint free variables, and
splits it into three clauses: D1 +: S1 and D2 +: S2 plus an additional clause
` D1, D2 that gets sent to the SAT solver. In the calculus here we represent this
step as follows:

S1 ++ S2 AvSplitS1 :+D2 AvSplit` D1, D2

DefR
Di ` ∀x Si

AllR, OrR, NegR
Di +: Si

Other splitting schemes such as the one implemented in SPASS [21] can be
simulated using these inferences as well. The splitting dependencies a clause
implicitly depends on are simply translated to explicit splitting atoms. For each
split we then take the resulting proofs of the two branches and resolve on the
opposing splitting atoms.

We assume a few minor technical restrictions on resolution proofs: there are
no AbbrL inferences below Rw, Refl, and Taut, and DefR with the same defined
atom. It is also important to note that we only allow subformula definitions in a
single polarity here—if we want to abbreviate a formula ϕ that occurs on both
sequent sides, then we need to introduce a different Di atom for each side.

Example 1 (Running example). The following is natural proof of a variant of
the Drinker’s formula. For simplicity, this proof does not make use of Avatar
or definition inferences. We label the subproofs on the left-hand side for later
reference.

Extracting expansion trees with splitting and definitions 5

(π0) ∃x∀y(P (x)→ P (y)) ` (Input)
(π1) ∀y(P (x)→ P (y)) ` (ExL(π0))
(π2) P (x)→ P (s(x)) ` (AllL(π1))
(π3) ` P (x) (ImpL(π2))

(π4) P (s(x)) ` (ImpR(π2))

(π5) ` P (s(x)) (Subst(π3))

(π6) ` (Res(π4, π5))

4 Expansion proofs

The proof formalism of expansion trees was introduced in [14] to describe Her-
brand disjunctions in higher-order logic. We use them in first-order logic as well,
since they are an elegant and convenient data structure. The central idea is that
each expansion tree E comes with a shallow formula sh(E) and a quantifier-
free deep formula dp(E). The deep formula corresponds to the Herbrand dis-
junction, the shallow formula is the quantified formula. If the deep formula is a
quasi-tautology (a tautology modulo equality), then the shallow formula is valid.

Expansion trees have two polarities: consider the formula (∀x ϕ) ∧ ¬(∀x ϕ).
In this example, the first quantifier has positive polarity, and the second one
negative polarity. This distinction is important since we must instantiate the
first one with a Skolem term, while we can instantiate the second one with
whatever terms we want.

We base the development on [12], and will only review the necessary re-
sults without repeating the proofs. We include several extensions here: there are
subformula definition nodes to represent the AbbrL inferences in the resolution
calculus. We also add cut nodes as in [12], these cuts are similar to cuts in a
sequent calculus and will be used to represent Avatar splitting inferences. We
also add Skolem nodes to represent the Skolemization steps.

Definition 1. We inductively define the set ETp(ϕ) of expansion trees with
polarity p ∈ {+,−} and shallow formula ϕ:

ϕ formula

wkp(ϕ) ∈ ETp(ϕ)

E1 ∈ ETp(ϕ) E2 ∈ ETp(ϕ)

E1 t E2 ∈ ETp(ϕ)

A atom/>
Ap ∈ ETp(A)

E ∈ ETp(ϕ)

¬E ∈ ET−p(¬ϕ)

E1 ∈ ETp(ϕ) E2 ∈ ETp(ψ)

E1 ∧ E2 ∈ ETp(ϕ ∧ ψ)

D(t)
def7→ ϕ

ϕ+def D
p(t) ∈ ETp(ϕ)

E1 ∈ ET+(ϕ) E2 ∈ ET−(ϕ)

Cut(E1, E2) ∈ ET−(>)

E ∈ ET+(ϕ[x\y])

∀x ϕ+y
ev E ∈ ET+(∀x ϕ)

E ∈ ET+(ϕ[x\t]) t
sk7→ ∀x ϕ

∀x ϕ+t
sk E ∈ ET+(∀x ϕ)

E1 ∈ ET−(ϕ[x\t1]) · · · En ∈ ET−(ϕ[x\tn])

∀x ϕ+t1 E1 · · ·+tn En ∈ ET−(∀x ϕ)

The tree wkp(ϕ) is called “weakening”, E1tE2 is called merge, ∀xϕ+y
evE ∈

ET+(∀x ϕ) is an eigenvariable node, and ∀x ϕ+t
sk E ∈ ET+(∀x ϕ) is a Skolem

6 Gabriel Ebner

node. Each expansion tree E has a uniquely determined shallow formula and
polarity, we write sh(E) for its shallow formula, and pol(E) for its polarity. The
size |E| of an expansion tree is the number of its leaves counted as in a tree.
Given an expansion tree E = ∀xϕ +y

ev E
′, we say that y is the eigenvariable of

E. The set EV(E) contains all eigenvariables of subtrees in E, including E. We
also use the notation for blocks of quantifiers with expansion trees, that is, we
write ∀x ϕ+x

ev E as an abbreviation for ∀x ϕ+x1
ev · · ·+xn

ev E.

Example 2. The following expansion tree E ∈ ET+(∃x∀y (P (x) → P (y))) has
our variant of the Drinker’s formula as shallow formula:

∃x∀y (P (x)→ P (y))

+x ∀y (P (x)→ P (y)) +
s(x)
sk (wk−(P (x))→ P (s(x))+)

+s(x) ∀y (P (s(x))→ P (y)) +
s(s(x))
sk (P (s(x))− → wk+(P (s(s(x)))))

While the shallow formula describes the quantified formula to be proven,
the deep formula is a quantifier-free formula corresponding to the Herbrand
disjunction:

Definition 2. Let E be an expansion tree, we define the deep formula dp(E)
recursively as follows:

dp(wk+(ϕ)) = ⊥, dp(wk−(ϕ)) = >

dp(E1 t E2) = dp(E1) ∨ dp(E2) if pol(E1 t E2) = +

dp(E1 t E2) = dp(E1) ∧ dp(E2) if pol(E1 t E2) = −

dp(Ap) = A, dp(¬E) = ¬dp(E), dp(E1 ∧ E2) = dp(E1) ∧ dp(E2)

dp(ϕ+defD
p(t)) = Dp(t), dp(∀xϕ+y

evE) = dp(E), dp(∀xϕ+t
skE) = dp(E)

dp(∀x ϕ+t1 E1 · · ·+tn En) = dp(E1) ∧ · · · ∧ dp(En)

Example 3. The expansion tree E in Example 2 has the following tautological
deep formula: dp(E) = (> → P (s(x))) ∨ (P (s(x))→ ⊥)

Eigenvariable nodes add a small technical complication to the definition of
an expansion proof. (But we need them since they arise during the extraction
of splitting inferences.) Not only is it necessary that the deep formula is quasi-
tautological, but the eigenvariables also need to be acyclic in a certain sense
(this is a similar restriction to the eigenvariable condition in sequent calculi).
We formalize this acyclicity using a dependency relation, which we will require
to be acyclic:

Definition 3. Let E be an expansion tree. The dependency relation <E is a
binary relation on variables where x <E y iff E contains a subtree E′ such that
x ∈ FV(sh(E′)) and y ∈ EV(E′).

Extracting expansion trees with splitting and definitions 7

Definition 4. An expansion sequent E is a sequent of expansion trees. Its de-
pendency relation <E =

⋃
E∈E <E is the union of the dependency relations of

its trees. Its shallow sequent and deep sequent consists of the shallow and deep
formulas of its expansion trees, respectively.

An expansion sequent is positive(negative) iff the trees in the succedent have
positive(negative) polarity and the trees in the antecedent have negative(positive)
polarity. The size |E| of an expansion sequent is the sum of the sizes of its
expansion trees.

Definition 5. An expansion proof E is a positive expansion sequent such that:

1. <E is acyclic (i.e., can be extended to a linear order) and there are no du-
plicate eigenvariables,

2. dp(E) is a quasi-tautology

Example 4. Let E be as in Example 2. The sequent dp(` E) is a tautology,
and the dependency relation of ` E is empty and hence acyclic. So ` E is an
expansion proof.

Expansion proofs are sound and complete for first-order logic. That is, if S is
a sequent, then there exists an expansion proof E with S as the shallow sequent
if and only if S is valid. Given a substitution σ that maps eigenvariables to
variables, we can apply it to expansion trees and expansion sequents, written
Eσ and Eσ, respectively.

The calculus for expansion proofs we presented is redundant: it is still com-
plete even without the t, +def , and Cut nodes. We also only need either the
eigenvariable or Skolem nodes. We will now review two reductions from [12] that
will eliminate the t and Cut nodes. The elimination of +def will be discussed in
Section 6.

The relation
t
 pushes merge nodes to the leaves of an expansion tree until

they disappear, for example (E1 ∧ E2) t (E3 ∧ E4)
t
 (E1 t E3) ∧ (E2 t E4)

reduces merges on conjunctions.

Lemma 1. The relation
t
 on expansion sequents has the following properties:

1.
t
 is terminating.

2. Whenever E t E ′, then dp(E)→ dp(E ′) is a tautology.

3.
t
 preserves acyclicity of the dependency relation.

4.
t
 preserves polarity and the shallow formula.

5. If E does not contain Skolem or definition nodes, then its
t
 -normal forms

do not contain merge nodes.

In particular the
t
 -normal forms of expansion proofs without Skolem or defini-

tion nodes are merge-free expansion proofs.

Proof. Analogous to Lemmas 12 and 13 in [12]. Note that merge reduction can
get stuck on merges of two Skolem nodes with different Skolem terms, or two
definition nodes with different definitions, hence the condition in point 5.

8 Gabriel Ebner

Cuts can be reduced and eventually eliminated as well. The cut-reduction

relation
cut
 (written as 7→ in [12]) extends merge-reduction and reduces quantified

cuts via substitution.

Lemma 2.
cut
 preserves quasi-tautology of the deep formula, and is weakly nor-

malizing. If no definition or Skolem nodes appear in cuts, then the
cut
 -normal

forms are cut-free.

Proof. See Lemma 16 and Theorem 33 in [12]. Just as in Lemma 1, cut-reduction
can get stuck on cuts with Skolem nodes such as Cut(∀x ϕ+x

sk . . . ,∀x ϕ+t . . .).

The following lemma will bound the complexity introduced by Avatar split-
ting inferences, since they will be translated to cuts on formulas of the form
∀x C(x) where C(x) is a clause.

Lemma 3. Let |E| be an expansion proof with n cuts such that all cut formulas

are universally quantified closed prenex formulas, and let E cut

∗
E∗ such that E∗

is cut-free. Then |E∗| ≤ |E|2n .

Proof. Merge reduction and propositional reduction steps reduce the size of the
expansion proof and keep the number of cuts constants. Each quantifier reduction
step decreases the number of cuts by one and increases the size of the proof at
most quadratically: essentially we duplicate the proof m times, where m is the
number of weak quantifier term blocks in the cut—and m is less than the size
of the expansion proof.

5 Extraction

In this section we convert a resolution proof of a formula ϕ into an expansion
proof with a shallow sequent of the following form:

∀x (ϕ1(x)→ D1(x)), · · · ,∀x (ϕn(x)→ Dn(x)) ` ϕ

That is, the expansions in the antecedent describe subformula definitions and

have definition axioms ∀x (ϕ(x) → D(x)) as shallow formulas where D(x)
def7→

ϕ(x). Furthermore the resulting expansion proof will not have any eigenvari-
able nodes. We will eliminate the additional expansion trees for definitions in
Section 6.

The extraction proceeds bottom-up, starting from the proof ending in the
empty clause, propagating expansions trees upward until they are at the Input-
rules. At every point, each subproof is assigned a finite set of expansion sequents.
Formally, we describe the extraction as a binary relation on these assignments
of expansion sequents, called extraction states:

Definition 6. An extraction state P;S is a pair consisting of a set P and an
expansion sequent S. Each element of P is a pair (π, E), where π is a subproof

Extracting expansion trees with splitting and definitions 9

ending in T and E is a negative expansion sequent such that there exists a sub-
stitution σ with T σ = sh(E). The deep formula of the extraction state is defined
as:

dp(P;S) =

(∧
(π,E)∈P

dp(E)

)
→ dp(S)

Please note that the trees of the negative expansion sequents here have the
opposite polarity as in the expansion sequents in Section 4. This is due to the
fact that resolution proofs are proofs by refutation. The resolution proof starts
with ϕ ` while the expansion proof has ` ϕ as the shallow sequent—observe
that ϕ occurs in opposite polarities here.

Given a resolution proof π, the initial extraction state is Cπ = ({(π,`)};`).
We can now define a relation on extraction states, that transforms the initial
extraction state into extraction state of the form ∅; E , where E is the desired
expansion proof. This relation preserves the quasi-tautologyhood of the deep
formula—we will prove this crucial property in Lemma 5. The relation is the
smallest relation containing the following cases:

P, (π, E1), (π, E2);S P, (π, E1 t E2);S if sh(E1) = sh(E2)

P;E1 +: E2 +: S P;E1 t E2 +: S if sh(E1) = sh(E2)

P;S :+ E1 :+ E2 P;S :+ E1 t E2 if sh(E1) = sh(E2)

Logical connectives:

P, (Input, E `);S P;S :+ E

P, (TopL(π), E);S P, (π,>+ +: E);S
P, (NegL(π), E :+ E1);S P, (π,¬E1 +: E);S
P, (NegR(π), E1 +: E);S P, (π, E :+ ¬E1);S

P, (AndL(π), E1 +: E2 +: E);S P, (π, (E1 ∧ E2) :+ E);S
P, (AndR1(π), E :+ E1);S P, (π, E :+ (E1 ∧ wk−(. . .)));S
P, (AndR2(π), E :+ E2);S P, (π, E :+ (wk−(. . .) ∧ E2));S
P, (AllR(π), E :+ E1);S P, (π, E :+ (∀x ϕ+xσ E1));S (ϕσ = sh(E1))

P, (AllL(π), E1 +: E);S P, (π, (∀x ϕ+t
sk E1) +: E);S

Subformula definitions:

P, (AbbrL(π), D+(t) +: E);S P, (π, (ϕ+def D
+(t)) +: E));S

P, (DefR(D(t)), ED ` Eϕ);S P;∀x(D(x)→ ϕ) +t (ED → Eϕ) +: S

Avatar splitting:

P, (AvSplit(π), E1 :+D−);S P, (π, E1 ++ S−2 [x\y]); (∀x S2 +y S+2 [x\y]→ D−) +: S
where S2 is as in the inference rule, and y are fresh variables

∅;E1 → D−, D+ → E2,S ∅; Cut(E1, E2) +: S if D does not occur in S

10 Gabriel Ebner

Logical inferences:

P, (Res(π1, π2), E1 E2);S P, (π1, E1 :+ ϕ−), (π2, ϕ
+ +: E2);S

P, (Factor(π), E :+ E1);S P, (π, E :+ E1 :+ E1);S
P, (Subst(π), E);S P, (π, E);S

P, (Taut(ϕ), E1 ` E2);S P;S
P, (Rw(π1, π2), E1 ++ E2 :+ E3[s]); P, (π1, E1 :+ (t = s)−), (π2, E2 :+ E3[t]);S

P, (Refl,` (t = t)−) P;S

Example 5. Let π6 be the resolution proof in Example 1. Then the relation
extracts the expansion proof as follows, where ϕx = ∀y(P (x)→ P (y)):

(π6,`);` (π4, P (s(x))︸ ︷︷ ︸
=E1

`), (π5,` E1);` (π4, E1 `), (π3,` E1);`

 2 (π2,wk−(P (x))→ E1︸ ︷︷ ︸
=E2

`), (π2, E1 → wk+(P (s(s(x))))︸ ︷︷ ︸
=E3

`);`

 2 (π1, ϕx +x
sk E2 `), (π1, ϕs(x) +

s(x)
sk E3 `);`

 2 (π1,∀xϕx +x ϕx +x
sk E2︸ ︷︷ ︸

=E4

`), (π1,∀xϕx +s(x) ϕs(x) +
s(x)
sk E3︸ ︷︷ ︸

=E5

`);`

 (π1, E4 t E5 `);` ∅;` E4 t E5

Definition 7. Let π be a resolution proof. Then |π|t and |π|d denote the number
of its inferences when counted as a tree or a DAG, respectively.

Lemma 4. is terminating.

Proof. Let P;S be a extraction state, we define its termination measure |P;S|n =
|S|c + 2

∑
(π,E)∈P |π|t where |S|c is the number of expansion trees in S. Each

case of the relation decreases this termination measure.

Lemma 5. Let C1 C2, then dp(C1) → dp(C2) is a quasi-tautology. If C1 is
acyclic, then so is C2.

Proof. Straightforward induction on .

Lemma 6. Let π be a resolution proof where all Input inferences have the for-
mula ϕ, and let Cπ ∗ (P,S1 ` S2). Then P = ∅, and:

1. for every E ∈ S1, sh(E) is either > or ∀x (D(x)→ ϕ) where D(t)
def7→ ϕ, and

2. for every E ∈ S2, sh(E) = ϕ.

Proof. If P 6= ∅, then we can apply one of the cases of . Properties 1. and 2.
are preserved in every case.

Using the relation we obtain an expansion proof with cuts. Since there are
no Skolem or definition nodes in these cuts, we can eliminate them (see Lemma 2)

to obtain a cut-free expansion proof E∗ with definitions: Cπ ∗ (∅, E)
cut

∗

(∅, E∗)

Extracting expansion trees with splitting and definitions 11

6 Definition elimination

Consider now a cut-free expansion proof E without eigenvariable nodes where
the shallow sequent contains only definition axioms in the antecedent (this is the
form of expansion proofs that are produced by the extraction in Section 5):

E = (ED1 , · · · , EDn ` Eϕ), sh(EDi) = ∀x (ϕi(x)→ Di(x)), sh(Eϕ) = ϕ (1)

The expansions of ϕi(t) may contain definition nodes as well. Due to the
acyclicity of the AbbrL-inferences, we can assume that each expansion of ϕi(t)
only contains definition nodes +def Dj(. . .) where j < i. We will now succes-
sively eliminate each of the definition axioms, starting with the one for n. The
expansion tree for ∀x (ϕn(x)→ Dn(x)) has the following form:

∀x (ϕn(x)→ Dn(x)) +t1
(
E1 → Dn(t1)−

)
· · ·+tk

(
Ek → Dn(tk)−

)
For performance reasons, we consider two cases here: in the first case the

deep sequent is tautological, in the second case the deep sequent is only quasi-
tautological. In both cases, we replace definition nodes +def Dn(. . .) in the
expansion proof by subtrees of EDn . However in the second case we perform
many duplications, and we want to avoid this if possible.

Tautological deep sequent. If dp(E) is not just quasi-tautological but tautolog-
ical (this is the case if the resolution proof did not use the built-in equational
inference Rw and Refl), then we merely need to replace each occurrence of a def-
inition node +def Dn(ti)

+ with the corresponding expansion tree Ei. We define
a function R[·] that performs this replacement on definition nodes for Dn, and
recursively maps over the other possible nodes:

R[ϕn(t) +def Dn(t)+] =

{
Ei if there exists i such that t = ti

wk+(ϕn(ti)) otherwise

Lemma 7. Let E be an expansion sequent as in Eq. (1). If dp(E) is tautological,
then dp

(
ED1 , · · · , EDn−1 ` R[ϕ]

)
is tautological as well.

Proof. Let I be a counter-model for dp
(
ED1 , · · · , EDn−1 ` R[ϕ]

)
. Assume without

loss of generality that I is not defined for any of the atoms Dn(t); we extend
I by setting I(Dn(ti)) = I(dp(Ei)) for all i, and I(Dn(t)) = 0 otherwise. We
now have I(dp(EDn)) = 1 as well as I(dp(R[ϕn(t)+defDn(t)+])) = I(Dn(t)) and
thus I(dp(R[Eϕ])) = I(dp(Eϕ)) since Dn only occurs in Eϕ in definition nodes.
Hence I is a counter-model for dp(E) as well.

Quasi-tautological deep sequent. In general, dp(E) may be just quasi-tautological.
In particular the following congruence scheme is quasi-tautological:

t1 = s1 ∧ · · · ∧ tm = sm → (D(t1, · · · , tm)↔ D(s1, · · · , sm))

12 Gabriel Ebner

Hence it is no longer sufficient to replace a definition node +def Dn(ti)
+ by

just the expansion tree where the arguments are syntactically equal. We replace
it by all the expansion trees E1, · · · , En, suitably replacing the term vectors
ti so that the shallow formulas match. To perform this replacement, we define
a generalization operation G. We first define the generalized tree E, and then
define the replacement operation Req uniformly for all definition atoms:

E = Gϕ(x)(E1) t · · · tGϕ(x)(En)

Req[ϕn(t) +def Dn(t)+] = E[x\t]

Definition 8. Let ϕ,ψ be first-order formulas such that ψσ = ϕ for some sub-
stitution σ, and E ∈ ETp(ϕ) an expansion tree without definition nodes. Then
we recursively define its generalization Gψ(E) ∈ ETp(ψ):

Gψ(Ap) = ψp G¬ψ(¬E) = ¬Gψ(E) Gψ(wkp(ϕ)) = wkp(ψ)

Gψ(E1 t E2) = Gψ(E1) tGψ(E2)

Gψ1∧ψ2
(E1 ∧ E2) = Gψ1

(E1) ∧Gψ2
(E2)

G∀xψ(∀xϕ+y
ev E) = ∀xϕ+y

ev Gψ[x\y](E)

G∀xψ(∀xϕ+t
sk E) = ∀xϕ+t

sk Gψ[x\t](E)

G∀xψ(∀xϕ+t1 E1 · · ·+tn En) = ∀xϕ+t1 Gψ[x\t1](E1) · · ·+tn Gψ[x\tn](En)

Lemma 8. Let E be an expansion sequent as in Eq. (1). If dp(E) is quasi-
tautological, then dp

(
ED1 , · · · , EDn−1 ` Req[ϕ]

)
is quasi-tautological as well.

Proof. Similar to Lemma 7, except we now set I(Dn(a)) = I(dp(E)[x\a]) for
all a in the domain of the counter-model.

7 Complexity

We will now give a double-exponential upper bound on the complexity of the
whole algorithm as summarized in Algorithm 1. Without Avatar inferences and
definition inferences, this bound would be just single-exponential. We do not
know whether this double-exponential bound is actually attained in the worst
case, the best known lower bound is single-exponential (as is necessary in any
conversion from resolution proofs to expansion proofs).

Lemma 9. Whenever Cπ ∗ (∅; E), then |E| ≤ 4|π|d+1.

Proof. Let P;S be a extraction state, we define its size as |P;S| = |S| +∑
(π,E)∈P 2|π|t|π|m + |E|, where |π|m is the maximum length of a sequent occur-

ring in π. No case of the relation increases this size. Observe that |π|m ≤ 2|π|d,
and hence |E| ≤ |Cπ| ≤ 2|π|t|π|m ≤ 2|π|d+2|π|d ≤ 4|π|d+1.

Extracting expansion trees with splitting and definitions 13

Lemma 10. Let π be a resolution proof, then |Transform(π)| ≤ 24
|π|d .

Proof. Let E1, E2, E3 be as in Algorithm 1. From Lemma 9 we know that |E1| ≤
4|π|d+1. Note that there are fewer than |π|d splitting and definition inferences
in π, and hence fewer than |π|d cuts and definitions in E1 and E2. The cost of
cut-elimination is shown in Lemma 3, we have |E2| ≤ |E1|2

c

where c < |π|d is
the number of cuts. We have a similar bound for definition elimination: each step

increases the size at most quadratically and we have |E3| ≤ |E2|2
d

where d < |π|d
is the number of definitions. Hence |Transform(π)| ≤ 4(|π|d+1)2c+d ≤ 24

|π|d .

8 Empirical evaluation

GAPT1 is an open source framework for proof transformations [6] and contains
an implementation of Algorithm 1. We evaluated the implementation in three
experiments using GAPT 2.9.

Algorithm 1 Transforming expansion proofs to resolution proofs

function Transform(π)
E1 ← Extract(π) (see Section 5)
E2 ← EliminateCuts(E1) (see Lemma 2)
E3 ← EliminateDefinitions(E2) (see Lemmas 7 and 8)
return E3

First, we compared it against the LK-based method for expansion proof ex-
traction from resolution proofs described in [11], which is also implemented in
GAPT. The TSTP library (Thousands of Solutions from Theorem Provers, see
[19]) contains proofs from a variety of automated theorem provers. We loaded all
6341 Prover9 proofs into GAPT, and measured the runtime of each of the algo-
rithms with a timeout of 120 seconds. GAPT is unable to read 40 of the proofs
at all since Prover9’s prooftrans executable fails. Of the remaining proofs, the
LK-based method in [11] imports 5479 proofs (87.0%). Algorithm 1 imports 6125
proofs (97.2%), it only fails on 176 proofs due to the timeout. There is no proof
where the LK-based method is successful, but Algorithm 1 fails.

Figure 1 plots the number of successfully imported proofs using each of the
algorithms against the DAG-like size of the resolution proof. The algorithm in
this paper manages to import much larger proofs, proofs between 1000 and 10000
inferences can not be imported by the LK-based method at all.

As the second experiment, we evaluated the quality of the clausification al-
lowed by the resolution calculus used in this paper. We took the 662 problems
in the first-order FEQ, FNE, FNN, and FNQ divisions of the CASC-26 compe-
tition whose size was less than one megabyte after including the separate axiom
files. On these 662 problems, we compared the performance of the E theorem
prover2 [18] version 2.1 (as submitted to CASC) when directly running on the
problems, and when running on the clausification produced by GAPT.

1 available at https://logic.at/gapt
2 We picked the highest-ranking prover in the first-order theorem category of the

CASC-26 competition whose license allows competitive evaluation.

https://logic.at/gapt

14 Gabriel Ebner

0 2000 4000 6000 8000 10000
dag-like size of resolution proof

10 1

100

101

102

103

nu
m

be
r o

f i
m

po
rte

d
pr

oo
fs

Algorithm 1
LK-based method

Fig. 1. Comparison of the number of successfully imported Prover9 proofs in the TSTP
using Algorithm 1 and the LK-based algorithm in [11].

GAPT fails to clausify 19 of the problems due to excessive runtime. These
problems (e.g. HWV053+1) have blocks of more than thousand quantifiers. On
the remaining ones we ran E in both the default configuration, and the auto-
scheduling mode (as used in the CASC), both with a timeout of 60 seconds.
In the default mode the E clausification results in 81 found proofs, the GAPT
clausification in 89. With auto-scheduling enabled the result is reversed but
still close, and E’s own clausification produces more proofs (308) than GAPT’s
clausification (285). These results show that the clausification allowed by the
calculus presented in this paper is competitive with the ones implemented in
state-of-the-art automated theorem provers. We believe that the reversed re-
sults for the auto-scheduling mode are indicative of a larger trend in first-order
theorem provers: many provers train their strategy selection algorithms on the
exact problems from the TPTP and are thus rely very closely on the syntactic
features of these problems.

Finally, we wanted to compare the runtime of Algorithm 1 with the runtime
of the first-order prover. To this end, we again used the same 662 first-order
problems from CASC-26 and used GAPT’s external prover interface to obtain
expansion proofs from E. This prover interface uses the clausification of the
resolution calculus described in this paper to create a CNF, sends this CNF
to E, then parses and reconstructs a resolution proof using proof replay, and
finally constructs an expansion proof using Algorithm 1. We measured the mean
runtime of each phase on the successfully imported proofs (only 7 proofs could
not be imported in the time limit of 2 minutes). The E prover itself takes up
62%, the largest part of the runtime. Algorithm 1 only takes 7.2% of the total
runtime. The rest of the runtime is spent mainly in proof replay (15.6%) and
clausification (4.6%).

Since the expansion proof extraction is only a fraction of the prover runtime,
we believe that is practically feasible to generate expansion proofs instead of

Extracting expansion trees with splitting and definitions 15

resolution proofs. Even though expansion proofs can be exponentially larger in
the worst case, this situation seems to occur only rarely.

9 Conclusion

The transformation described in this paper has been used as the default method
to generate expansion proofs from resolution proofs in GAPT since version 2.2.
Using it, GAPT can effectively interface with six different external resolution-
based provers, including SPASS and Vampire with their splitting rules. The
modular integration of structural clausification makes it possible to reuse it
for non-resolution provers as well: the interface to the connection-based prover
LeanCoP [15,17] uses the same code for clausification and definition elimination.

A limitation of the clausification is that it can expand each definition only
in a single polarity. Lifting this restriction would produce cuts in the definition
elimination phase. However, these cuts would contain Skolem nodes and cannot
be eliminated directly. In the equality-free case, there is a reliable deskolem-
ization procedure [2] which can be used as a preprocessing step to enable cut-
elimination. Such a procedure is yet missing for proofs with equational reasoning.
Reliable deskolemization would also enable a straightforward adaptation of ex-
ternal clausifications via proof replay.

Many of the techniques used here come from higher-order logic, both An-
drew’s calculus R and expansion trees originate in that setting. It seems only
natural to extend this transformation to higher-order logic, and there seem to be
no immediate obstacles except for the built-in equational inferences. But these
could be straightforwardly translated to explicit Leibniz equality.

Many clausification procedures perform propositional simplification rules as
a pre-processing step, for example rewriting ϕ ∧ > 7→ ϕ or converting to nega-
tion normal form. These simplifications could be helpful in the clausification
here as well, since they potentially enable sharing of subformula definitions and
Skolem functions. These could be supported by adding new inference rules to
the resolution calculus and adapting the expansion tree extraction in the natural
way.

Finally, for simplicity we convert the SMT refutations in proofs using Avatar
to resolution proofs first. However there is no fundamental reason why we need
to perform this costly conversion, since the SMT refutation is purely ground and
is essentially discarded in this translation. Adding a new rule to represent this
part of the proof in a single inference would deliver even greater performance.

References

1. Andrews, P.B.: Resolution in type theory. Journal of Symbolic Logic 36(3), 414–432
(1971)

2. Baaz, M., Hetzl, S., Weller, D.: On the complexity of proof deskolemization. Journal
of Symbolic Logic 77(2), 669–686 (2012)

16 Gabriel Ebner

3. Buss, S.R.: On Herbrand’s Theorem. In: Logic and Computational Complexity,
Lecture Notes in Computer Science, vol. 960, pp. 195–209. Springer (1995)

4. Eberhard, S., Hetzl, S.: Inductive theorem proving based on tree grammars. Annals
of Pure and Applied Logic 166(6), 665–700 (2015)

5. Ebner, G., Hetzl, S., Leitsch, A., Reis, G., Weller, D.: On the generation of quan-
tified lemmas (2017), submitted

6. Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S.: System de-
scription: GAPT 2.0. In: Olivetti, N., Tiwari, A. (eds.) International Joint Confer-
ence on Automated Reasoning (IJCAR). Lecture Notes in Computer Science, vol.
9706, pp. 293–301. Springer (2016)

7. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Univer-
sité de Paris (1930)

8. Hetzl, S., Leitsch, A., Reis, G., Tapolczai, J., Weller, D.: Introducing quantified cuts
in logic with equality. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) International
Joint Conference on Automated Reasonin (IJCAR). Lecture Notes in Computer
Science, vol. 8562, pp. 240–254. Springer (2014)

9. Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified
cuts. Theoretical Computer Science 549, 1–16 (2014)

10. Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. In: Logic
for Programming, Artificial Intelligence and Reasoning (LPAR-18). Lecture Notes
in Computer Science, vol. 7180, pp. 228–242. Springer (2012)

11. Hetzl, S., Libal, T., Riener, M., Rukhaia, M.: Understanding Resolution Proofs
through Herbrand’s Theorem. In: 22nd International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, TABLEAUX. pp. 157–
171 (2013)

12. Hetzl, S., Weller, D.: Expansion trees with cut (2013), https://arxiv.org/abs/
1308.0428

13. Luckhardt, H.: Herbrand-Analysen zweier Beweise des Satzes von Roth: Polyno-
miale Anzahlschranken. The Journal of Symbolic Logic 54(1), 234–263 (1989)

14. Miller, D.A.: A compact representation of proofs. Studia Logica 46(4), 347–370
(1987)

15. Otten, J.: leancop 2.0 and ileancop 1.2: High performance lean theorem proving in
classical and intuitionistic logic. In: 4th International Joint Conference on Auto-
mated Reasoning, IJCAR. pp. 283–291 (2008)

16. Pfenning, F.: Analytic and non-analytic proofs. In: Shostak, R.E. (ed.) 7th Inter-
national Conference on Automated Deduction, CADE. Lecture Notes in Computer
Science, vol. 170, pp. 394–413. Springer (1984)

17. Reis, G.: Importing SMT and connection proofs as expansion trees. In: Fourth
Workshop on Proof eXchange for Theorem Proving, PxTP. pp. 3–10 (2015)

18. Schulz, S.: System Description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) 19th International Conference on Logic for Programming, Artificial In-
telligence, and Reasoning (LPAR). LNCS, vol. 8312. Springer (2013)

19. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

20. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) 26th International Conference on Computer Aided Verification,
CAV 2014. Lecture Notes in Computer Science, vol. 8559, pp. 696–710. Springer
(2014)

21. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, chap. 27, pp. 1965–
2013 (2001)

https://arxiv.org/abs/1308.0428
https://arxiv.org/abs/1308.0428

	Extracting expansion trees from resolution proofs with splitting and definitions

