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Lean

• Proof assistant based on dependent type theory
• terms, types, formulas, proofs are all expressions

• small kernel (unlike Coq)

• uses axiom of choice and classical logic
• but avoided outside of proofs

• Tactics/metaprograms are defined in the object language
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Syntax

c -- constants
x -- variables
t s
λ x : t, s
Π x : t, s -- often written ∀ or →
Sort u -- Prop, Type

• e.g.

∀ α : Type, ∀ β : Type, ∀ r : ring α,
∀ m : module α β r, ∀ x : β,
1 · x = x
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super

• Superposition prover

• Implemented 100% in Lean
• First “large” metaprogram

• Uses Lean expressions, unification, proofs

• 2200 lines of code
• (including toy SAT solver)

• Think of metis in Isabelle
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Intended logic

• Complete for first-order logic with equality

• Higher-order not a focus
• but don’t fail on lambdas
• no encoding for applicative FOL

• Some inferences for inductive data types
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Clauses

• How to represent a clause a,b ⊢ c,d?

1. ¬a ∨ ¬b ∨ c ∨ d

2. a→ b→ c ∨ d

3. a→ b→ ¬c→ ¬d→ false
• also used in Coq by Bezem, Hendriks, de Nivelle 2002
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Intuitionistic reasoning

• Actually: a→ b→ (c→ F) → (d→ F) → F

• (F is a definition for the original goal)

→ often intuitionistic proofs
• e.g. for assumptions like ∀x,

∧
A→

∨
B

• want to avoid classical reasoning on types

• also makes use of decidable instances
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Quantifiers

∀ α, ∀ β, ∀ r : ring α,
∀ m : module α β r, ∀ x : β,
(smul α β r m (one α r) x = x → F) → F

• only perform inferences on non-dependent literals

• when literals are resolved away,
we get new non-dependent literals
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Skolemization

• Skolemization not sound in general
• requires non-empty domain

→ add extra (implicit) argument to Skolem function
• ∀x,P→ ∃y : α,Q x y becomes
∀x,∀z : α,P→ ∀x,Q x (fzx)

• automatically discharged for nonempty instances
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Refinements

• Subsumption

• Term ordering

• Literal selection

• Demodulation

• Splitting (Avatar)
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Term ordering

• Standard lexicographic path order

• Curried applications fabc are treated as f(a,b, c)

• Type parameters, type-class instances
are also arguments!
• does not seem to be a performance problem

• λ and Π expressions are treated as (unknown) variables
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Avatar-style splitting

• Splits clause into variable-disjoint components

⊢ Px,Qy

s1

⊢ Px
⊢ Px,Qy

s2

⊢ Qy

⊢ s1, s2

• s1 := ∀x Px
• s2 := ∀y Qy

• No inferences are performed on these splitting atoms
→ sent to SAT solver instead
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Lean-specific rules

A,Γ ⊢ ∆ if A has a type-class instance
Γ ⊢ ∆

• such as inhabited, is_associative, …

Γ ⊢ ∆,cons a b = cons c d
Γ ⊢ ∆,a = c ∧ b = d cons a b = nil,Γ ⊢ ∆
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General approach

• reuse built-in data structures
• expressions
• proofs
• unifier

• Lean’s unifier essentially does:
• pattern unification
• definitional reduction
• some heuristics

• rewriting only at first-order argument positions
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Proof construction

• unification, type inference only work with local context

→ clauses are stored in the local context:
cls_0: A → (B → F) → F
cls_1: (A → F) → F
cls_2: B → F

cls_3: (B → F) → F
cls_4: F

⊢ F

• avoids exponential blowup

• post-processing step to remove unused subproofs

B does not work with universe polymorphism 17
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SAT proof construction

• For each literal on the trail, store proof of:
A A→ F (A→ F) → F

• decision literals have fresh local constants
• propagated literals have actual proofs

• on conflict, add lambdas for the decision literals

• produces intuitionistic proofs
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State transformer

meta structure prover_state :=
(active : rb_map clause_id derived_clause)
(passive : rb_map clause_id derived_clause)
(newly_derived : list derived_clause)
(prec : list expr)
-- . . .

meta def prover := state_t prover_state tactic
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Universe polymorphism

• Hypothesis in the local context cannot be
universe polymorphic
• You can’t even have ∀ x, x ++ [] = x
for all types

• Possible workaround: create a new environment
• extra type-checking
• not intended use (errors and warnings are printed directly)

→ manually implement proof handling
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Performance: metavariables

• For unification, we instantiate ∀x Px→ F as P?m_1 → F
• built-in unification uses metavariables

• Afterwards, we quantify over the free metavariables

• Pretty slow

→ Lean 4 will expose temporary metavariables
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Performance: unifier

• unpredictable performance

• performance problem even with few clauses

→ do some prefiltering

→ implement term indexing
• non-trivial, idiomatic code relies on definitional equality
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Other future work

• Simplifier integration
• different term order for x · y = y · x

• AC redundancy checks

• Heterogeneous equality, congruence lemmas
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Conclusion

• Not yet production-ready
• performance subpar
• missing support for universe polymorphism

• Lean 4 should bring useful APIs
• temporary metavariables

• long term: proof reconstruction for “leanhammer”
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