Fast cut-elimination using proof terms:
an empirical study

Gabriel Ebner

CL&C'18
2018-07-07

TU Wien

Introduction

Herbrand's theorem

Theorem (special case of Herbrand 1930)
Let ©(x) be a quantifier-free first-order formula.

Then 3x ¢(x) is valid iff there exist terms t;, ..., tp
such that p(t1) vV --- V (ts) is a tautology.

Herbrand's theorem

Theorem (Miller 1987)
Let ¢ be a higher-order formula.

Then ¢ is a theorem of elementary type theory iff there exists an expansion tree E
such that dp(E) is a tautology and sh(E) = ¢.

Obtaining Herbrand disjunctions

« We can directly extract Herbrand disjunctions from cut-free proofs

- Even from proofs with quantifier-free cuts
— do not require full cut-elimination

Uses of Herbrand’s theorem

- Computational interpretation of proofs
- Luckhardt’s proof of Roth’s theorem (1989)
- Equality of proofs

« Proof complexity

Computational proof theory

 GAPT: General Architecture for Proof Theory

< open source, written in Scala
- https://github.com/gapt/gapt

- many algorithms based on Herbrand disjunctions

+ lemma generation (cut-introduction)
- automated inductive theorem proving
+ proof deskolemization

— need fast & reliable cut-elimination

https://github.com/gapt/gapt

+ calculus close to LK
+ most of our proofs are in LK

+ needs to support nonstandard inference rules
+ Skolemization
+ schematic proofs with cycles

- higher-order logic
« induction rule

- equational reasoning

+ Term calculus from Urban, Bierman 2001
- direct term assignment for LK

- slightly extended:
+ higher-order logic
* induction
- equality

- fast big-step normalization

Calculus

+ Elementary type theory
+ no extensionality or choice built-in

- Structural induction for some base types

« Formulas in simply typed lambda calculus
« AO0—0—0

. V(zx—>o)—>o

10

py - Py

- py — py
o ¥x(px — px)

L

AX(h3, h4) S\ hs: py hy: py
AndL(hz, h3: hy: AX(h3, h4)) S\ F hy: py — py
AHR("M, hzi X: AndL(hz, h32 h42 AAX(h37 h4))) 0 H h12 VX (pX — pX)

L

AX(h3, h4) S\ hs: py hq: Vx (pX — [DX)7 h,: py — py, hy: py
AndL(hz, h32 h43 AX(h3, h4)) S\ F h12 VX (px — px), hz: py — py
AHR(I’M, hz: X: AndL(hz, h32 h42 AX(h3, h4))) 0 H h12 VX (pX — pX)

L

AX(h3, h4) S\ hs: py hq: Vx (pX — [DX)7 h,: py — py, hy: py
AndL(hz, h32 h43 AX(h3, h4)) S\ F h12 VX (px — px), hz: py — py
AHR(I’M, hz: X: AndL(hz, h32 h42 AX(h3, h4))) 0 H h12 VX (pX — pX)

- Weakening and contraction are implicit

L

Three (partial?) functions:

« N(x) returns a normal form of =
— result of normalization

* E(p, hy: m, hy:) where m and m, are normalized
— reduction of a top-most cut

 8(m1, ¢, h1 := hy:) where 71 and 7, are normalized
— full rank-reduction
+ “proof substitution” in Urban, Bierman 2001

All preserve typing and return normal forms.

12

N (NegL(hs, hy: 1)) = NegL’ (hq, hy: N(7))
E(—p, hi: NegR(hn, ha: m1), hs: NegL(hs, hs: m3)) = E(p, hy: 75, hy: 7))

8(1&X(h17 hz), @, h1 = h32 7T) = 7T[h3\h2]
S(NegL(h1, hz: 7T1),(p, h3 = h42 7r2) = NegL?(h1,h2: 8(7T1,(p, h3 = h4: 7T2))

13

Theorem
Letw ::, T A suchthat N(x) .

If = does not contain Rfl, Eql, or Ind * then N () is cut-free.

If T does not contain Ind * and Eql only rewrites atoms,
then N () has at most atomic cuts.

* or definition, Skolem, link inferences

14

Induction-elimination

- Typically consider proofs of e.g.:

Vxx+ 0 =X,
VXYY X + S(Y) = s(X +)
FVx(0 +x = X)

15

Induction-elimination

« Want cut-free proof of:

Vxx+ 0 =X,
VXYY X+ S(Y) = s(X +)
0+ s"(0) =s"(0)

15

Induction unfolding

« unfold induction inferences on constructors to cuts

Ind(hq, ¢, 0, hy: m,x: h3: hy:) — m[hy\hq]
Ind(h1,gp,s(t),h2: 7, X: h32 h4: 7'('2) —
Cut(cp(t), h1: Ind(h1,<p7t, hz: 7, X h32 h4: 71'2), h3: 7T2[X\t][h4\h1])

- alternate between cut-elimination and induction unfolding

16

Termination

- Interesting question
+ conjecture termination for full calculus

- Not so important for our applications

- First-order fragment terminates by induction on w?

- Urban and Bierman showed strong normalization
for first-order fragment (w/o equality)
- subtle difference: NegR’

17

Evaluation

18

Benchmarked methods

- LK: existing Gentzen-style cut-elimination

 CERES: cut-elimination by resolution
- also expansion proof optimization (Leitsch, Lolic 2018)

- Semantic cut-elimination
+ Forget proof, run automated theorem prover instead

+ Expansion proof cut-elimination
+ like second e-theorem, operates only on quantifier instances

« LK;: this method

19

seconds

10!

101

1073

107

1077

CERES (LK)
CERES (expansion)
semantic

expansion proof

LKt

LKt (until atomic)

LKt (until quant.-free)

6 7 8

20

VX(X + 0 = x), VxVy(x + s(y) = s(x+ y)) F ¥x(0 + x = x)

1 1 —e— LK
10 3 —— semantic
] —&— LKt
o LKt (until atomic)
10 7 —»— LKt (until quant.-free)
@ |
c 107! E
(o] E
S E
9]
m 4
1072 E
103 E

21

Furstenberg’s proof

22

Proof of the infinitude of primes

Theorem
There are infinitely many primes.

Proof (Furstenberg 1955).
Equip Z with the topology generated by the arithmetic progressions... O

- What is the combinatorial essence of this proof?

23

Proof analysis of Furstenberg’s proof

— second-order proof of 3q (prime(q) A q € {p(0),...,p(n —1)}) forn e N
- use cut-elimination to compute witness q

- Similar approach used by Girard 1987
to analyze proof of van der Waerden's theorem by Furstenberg 1981

24

Analysis with CERES

- Previous analysis using CERES (cut-elimination by resolution)
(Baaz, Hetzl, Leitsch, Richter, Spohr 2008)

- Requires resolution refutation of characteristic clause set
« Automated theorem provers only managed n =0

— Manual specification of resolution proofs forn > 0
— prime divisor of 1+ p(0) - -- x p(n) as witness

+ another refutation for n = 2 yields a
prime divisor of p(0) +1,p(1) +1, or 5

25

Witness obtained with LK,

primediv_of(1+ 2« p(0)x*---x*p(n))

- computable in reasonable time for n < 10
« (with a bit of post-processing)

- small changes in proof have big effect on witness
- can also get factor 3

26

Demo

27

Demonstration

28

Conclusion

29

Conclusion

« Term assignments are an efficient implementation technique
for proof transformation and analysis

+ 10*x speedup with only small changes to the calculus
— compare with other low-bureaucracy approaches

« functional interpretation
» tree grammars

30

Backup slides

Sil

Hyp ::= — NT | +N*

Term ::= Ax(Hyp, Hyp) | TopR(Hyp)
| Cut(Formula, Hyp: Term, Hyp: Term)
| NegL(Hyp, Hyp: Term) | NegR(Hyp, Hyp: Term)
| AndL(Hyp, Hyp: Hyp: Term) | AndR(Hyp, Hyp: Term, Hyp: Term)
| AlIL(Hyp, Expr,Hyp: Term) | AlIR(Hyp, Var: Hyp: Term)
| Rfl(Hyp) | Eql(Hyp, Hyp, Bool, Expr,Hyp: Term)
| Ind(Hyp, Expr, Expr, Hyp: Term, Var: Hyp: Hyp: Term)

32

Other inference rules

« Proof links — schematic proofs with cycles

tis a name for a proof of vq,--- ..., p
Link(t,[h1,...,hn]) =6 h1zen,...,TEA ... hp: pp

- Definition rules
T e TEAh: @ hy:
Def(h1,¢',hy:) =1 THA Dy

- Skolem rules — Skolemized cut-free proofs in higher-order logic

T e [H A h VX o(X), hy: ()
AlISk(hq,x, hy:) =5 TE A hy: VX (X)

(t is Skolem term for V¥x ¢(x))

38

Object language

- Higher-order logic (simply-typed lambda calculus)
+ Types:
- Booleans: o

- other base types: a,b,c, ...
« function type: o — 3

« Terms:

» constants: ¢”

+ variables: x™

- application: ts

+ abstraction: \x7 t

34

Implementation

« in GAPT

- named variables as binding strategy

+ cache set of free variables in each term
— can effectively skip many branches

g3

	Introduction
	Calculus
	Evaluation
	Furstenberg's proof
	Demo
	Conclusion

