Fast cut-elimination using proof terms: an empirical study

Gabriel Ebner

CL&C'18 2018-07-07

TU Wien

2010-07-07

Introduction

Calculus

Evaluation

Furstenberg's proof

Demo

Conclusion

Herbrand's theorem

Theorem (special case of Herbrand 1930)

Let $\varphi(x)$ be a quantifier-free first-order formula.

Then $\exists x \varphi(x)$ is valid iff there exist terms t_1, \ldots, t_n such that $\varphi(t_1) \vee \cdots \vee \varphi(t_n)$ is a tautology.

Herbrand's theorem

Theorem (Miller 1987)

Let φ be a higher-order formula.

Then φ is a theorem of elementary type theory iff there exists an expansion tree E such that dp(E) is a tautology and $sh(E) = \varphi$.

3

Obtaining Herbrand disjunctions

- We can directly extract Herbrand disjunctions from cut-free proofs
- Even from proofs with quantifier-free cuts
 - ightarrow do not require full cut-elimination

Uses of Herbrand's theorem

- Computational interpretation of proofs
- Luckhardt's proof of Roth's theorem (1989)
- Equality of proofs
- Proof complexity

Computational proof theory

- GAPT: General Architecture for Proof Theory
 - · open source, written in Scala
 - https://github.com/gapt/gapt
- many algorithms based on Herbrand disjunctions
 - lemma generation (cut-introduction)
 - · automated inductive theorem proving
 - · proof deskolemization
- \rightarrow need fast & reliable cut-elimination

Wishlist

- · calculus close to LK
 - most of our proofs are in LK
- needs to support nonstandard inference rules
 - Skolemization
 - schematic proofs with cycles
 - ...
- higher-order logic
- induction rule
- equational reasoning

Solution

- Term calculus from Urban, Bierman 2001
 - · direct term assignment for LK
- slightly extended:
 - · higher-order logic
 - induction
 - equality
- fast big-step normalization

Introduction

Calculus

Evaluation

Furstenberg's proof

Demo

Conclusion

Logic

- Elementary type theory
 - · no extensionality or choice built-in
- Structural induction for some base types
- Formulas in simply typed lambda calculus
 - \o→o→o
 - $\forall_{\alpha}^{(\alpha \to 0) \to 0}$
 - . . .

ру ⊢			ру
	H		py o py
		\vdash	$\forall x (px \rightarrow px)$

$Ax(h_3, h_4) ::_{[x\setminus y]} h_3 : py \vdash$	h ₄ : py
$\mathrm{AndL}(h_2,h_3\colon h_4\colon \mathrm{Ax}(h_3,h_4))\ ::_{[x\setminus y]}\ \vdash$	$h_2 \colon py \to py$
AllR $(h_1, h_2: x: AndL(h_2, h_3: h_4: Ax(h_3, h_4))) ::_[]$	$\vdash h_1: \forall x (px \rightarrow px)$

$$\begin{array}{c} \text{Ax}(h_{3},h_{4}) ::_{[X \setminus y]} \ h_{3} : py \vdash h_{1} : \ \forall x \ (px \to px), h_{2} : py \to py, h_{4} : \ py \\ \text{AndL}(h_{2},h_{3} : h_{4} : \text{Ax}(h_{3},h_{4})) ::_{[X \setminus y]} \ \vdash h_{1} : \ \forall x \ (px \to px), h_{2} : py \to py \\ \text{AllR}(h_{1},h_{2} : x : \text{AndL}(h_{2},h_{3} : h_{4} : \text{Ax}(h_{3},h_{4}))) ::_{[]} \ \vdash h_{1} : \ \forall x \ (px \to px) \end{array}$$

$$\frac{\operatorname{Ax}(h_{3},h_{4}) ::_{[x\setminus y]} h_{3} : py \vdash h_{1} : \forall x (px \to px), h_{2} : py \to py, h_{4} : py}{\operatorname{AndL}(h_{2},h_{3} : h_{4} : \operatorname{Ax}(h_{3},h_{4})) ::_{[x\setminus y]} \vdash h_{1} : \forall x (px \to px), h_{2} : py \to py}{\operatorname{AllR}(h_{1},h_{2} : x : \operatorname{AndL}(h_{2},h_{3} : h_{4} : \operatorname{Ax}(h_{3},h_{4}))) ::_{[]} \vdash h_{1} : \forall x (px \to px)}$$

Weakening and contraction are implicit

Evaluation

Three (partial?) functions:

- $\mathcal{N}(\pi)$ returns a normal form of π
 - \rightarrow result of normalization
- $\mathcal{E}(\varphi,h_1:\pi_1,h_2:\pi_2)$ where π_1 and π_2 are normalized
 - \rightarrow reduction of a top-most cut
- $S(\pi_1, \varphi, h_1 := h_2 : \pi_2)$ where π_1 and π_2 are normalized
 - → full rank-reduction
 - "proof substitution" in Urban, Bierman 2001

All preserve typing and return normal forms.

Evaluation

$$\mathcal{N}(\operatorname{NegL}(h_{1},h_{2}\colon\pi)) = \operatorname{NegL}^{?}(h_{1},h_{2}\colon\mathcal{N}(\pi))$$

$$\vdots$$

$$\mathcal{E}(\neg\varphi,h_{1}\colon\operatorname{NegR}(h_{1},h_{2}\colon\pi_{1}),h_{3}\colon\operatorname{NegL}(h_{3},h_{4}\colon\pi_{2})) = \mathcal{E}(\varphi,h_{4}\colon\pi_{2}',h_{2}\colon\pi_{1}')$$

$$\vdots$$

$$\mathcal{S}(\operatorname{Ax}(h_{1},h_{2}),\varphi,h_{1}:=h_{3}\colon\pi) = \pi[h_{3}\backslash h_{2}]$$

$$\mathcal{S}(\operatorname{NegL}(h_{1},h_{2}\colon\pi_{1}),\varphi,h_{3}:=h_{4}\colon\pi_{2}) = \operatorname{NegL}^{?}(h_{1},h_{2}\colon\mathcal{S}(\pi_{1},\varphi,h_{3}:=h_{4}\colon\pi_{2}))$$

$$\vdots$$

Canonicity

Theorem

Let $\pi ::_{\sigma} \Gamma \vdash \Delta$ such that $\mathcal{N}(\pi) \downarrow$.

If π does not contain Rfl, Eql, or Ind *, then $\mathcal{N}(\pi)$ is cut-free.

If π does not contain Ind *, and Eql only rewrites atoms, then $\mathcal{N}(\pi)$ has at most atomic cuts.

* or definition, Skolem, link inferences

Induction-elimination

• Typically consider proofs of e.g.:

$$\forall x \, x + 0 = x,$$

$$\forall x \forall y \, x + s(y) = s(x + y)$$

$$\vdash \forall x (0 + x = x)$$

Induction-elimination

• Want cut-free proof of:

$$\forall x \, x + 0 = x,$$

$$\forall x \forall y \, x + s(y) = s(x + y)$$

$$\vdash 0 + s^{n}(0) = s^{n}(0)$$

Induction unfolding

· unfold induction inferences on constructors to cuts

$$\begin{split} & \operatorname{Ind}(h_{1}, \varphi, 0, h_{2} \colon \pi_{1}, x \colon h_{3} \colon h_{4} \colon \pi_{2}) \ \mapsto \ \pi_{1}[h_{2} \backslash h_{1}] \\ & \operatorname{Ind}(h_{1}, \varphi, s(t), h_{2} \colon \pi_{1}, x \colon h_{3} \colon h_{4} \colon \pi_{2}) \ \mapsto \\ & \operatorname{Cut}(\varphi(t), h_{1} \colon \operatorname{Ind}(h_{1}, \varphi, t, h_{2} \colon \pi_{1}, x \colon h_{3} \colon h_{4} \colon \pi_{2}), h_{3} \colon \pi_{2}[x \backslash t][h_{4} \backslash h_{1}]) \end{split}$$

alternate between cut-elimination and induction unfolding

Termination

- Interesting question
 - · conjecture termination for full calculus
- Not so important for our applications
- First-order fragment terminates by induction on ω^2
- Urban and Bierman showed strong normalization for first-order fragment (w/o equality)
 - subtle difference: NegR?

Introduction

Calculus

Evaluation

Furstenberg's proof

Demo

Conclusion

Benchmarked methods

- LK: existing Gentzen-style cut-elimination
- CERES: cut-elimination by resolution
 - also expansion proof optimization (Leitsch, Lolic 2018)
- · Semantic cut-elimination
 - Forget proof, run automated theorem prover instead
- · Expansion proof cut-elimination
 - like second arepsilon-theorem, operates only on quantifier instances
- LK_t: this method

$P(0), \forall x (P(x) \rightarrow P(s(x)) \vdash P(s^{2^n}(0))$

$\forall x(x+0=x), \forall x\forall y(x+s(y)=s(x+y)) \vdash \forall x(0+x=x)$

Introduction

Calculus

Evaluation

Furstenberg's proof

Demo

Conclusior

Proof of the infinitude of primes

Theorem

There are infinitely many primes.

Proof (Furstenberg 1955).

Equip $\ensuremath{\mathbb{Z}}$ with the topology generated by the arithmetic progressions...

What is the combinatorial essence of this proof?

Proof analysis of Furstenberg's proof

- \rightarrow second-order proof of $\exists q \text{ (prime}(q) \land q \notin \{p(0), \dots, p(n-1)\}) \text{ for } n \in \mathbb{N}$
 - use cut-elimination to compute witness q
 - Similar approach used by Girard 1987
 to analyze proof of van der Waerden's theorem by Furstenberg 1981

Analysis with CERES

- Previous analysis using CERES (cut-elimination by resolution)
 (Baaz, Hetzl, Leitsch, Richter, Spohr 2008)
- Requires resolution refutation of characteristic clause set
 - Automated theorem provers only managed n=0
 - ightarrow Manual specification of resolution proofs for $n \geq 0$
- \rightarrow prime divisor of $1 + p(0) * \cdots * p(n)$ as witness
 - another refutation for n = 2 yields a prime divisor of p(0) + 1, p(1) + 1, or 5

Witness obtained with LK_{t}

$$\texttt{primediv_of}(1+2*p(0)*\cdots*p(n))$$

- computable in reasonable time for n < 10
 - (with a bit of post-processing)
- small changes in proof have big effect on witness
 - can also get factor 3

Introduction

Calculus

Evaluation

Furstenberg's proof

Demo

Conclusion

Demonstration

Introduction

Calculus

Evaluation

Furstenberg's proof

Demo

Conclusion

Conclusion

- Term assignments are an efficient implementation technique for proof transformation and analysis
 - 10⁴x speedup with only small changes to the calculus
- ightarrow compare with other low-bureaucracy approaches
 - functional interpretation
 - tree grammars

Backup slides

Syntax

```
Hvp := -\mathbb{N}^+ \mid +\mathbb{N}^+
Term ::= Ax(Hyp, Hyp) \mid TopR(Hyp)
         | Cut(Formula, Hyp: Term, Hyp: Term)
         | \text{NegL}(Hvp, Hvp: Term) | \text{NegR}(Hvp, Hvp: Term) |
         |\operatorname{AndL}(Hyp, Hyp: Hyp: Term)| \operatorname{AndR}(Hyp, Hyp: Term, Hyp: Term)
          |Rfl(Hyp)|Egl(Hyp, Hyp, Bool, Expr, Hyp: Term)
         |\operatorname{Ind}(\mathsf{Hyp},\mathsf{Expr},\mathsf{Expr},\mathsf{Hyp})| Term, |\operatorname{Var}| Hyp: Hyp: Term)
```

Other inference rules

• Proof links \rightarrow schematic proofs with cycles

t is a name for a proof of
$$\varphi_1, \dots \vdash \dots, \varphi_n$$

$$\frac{\text{Link}(t, [h_1, \dots, h_n]) ::_{\sigma} h_1 : \varphi_1, \dots, \Gamma \vdash \Delta, \dots, h_n : \varphi_n}{\text{Link}(t, [h_1, \dots, h_n])}$$

Definition rules

$$\frac{\pi ::_{\sigma} \Gamma \vdash \Delta, h_1: \varphi, h_2: \varphi'}{\operatorname{Def}(h_1, \varphi', h_2: \pi) ::_{\sigma} \Gamma \vdash \Delta, h_1: \varphi}$$

- Skolem rules \rightarrow Skolemized cut-free proofs in higher-order logic

$$\frac{\pi ::_{\sigma} \Gamma \vdash \Delta, h_1 : \forall x \varphi(x), h_2 : \varphi(t)}{\text{AllSk}(h_1, x, h_2 : \pi) ::_{\sigma} \Gamma \vdash \Delta, h_1 : \forall x \varphi(x)} \text{ (t is Skolem term for } \forall x \varphi(x)\text{)}$$

Object language

- Higher-order logic (simply-typed lambda calculus)
- Types:
 - Booleans: o
 - other base types: a, b, c, \ldots
 - function type: $\alpha \to \beta$
- Terms:
 - constants: c^{τ}
 - variables: x^{τ}
 - application: ts
 - abstraction: $\lambda x^{\tau} t$

Implementation

- in GAPT
- named variables as binding strategy
- · cache set of free variables in each term
 - $\rightarrow \ \text{can effectively skip many branches}$