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Abstract. Totally rigid acyclic tree grammars (TRATGs) are an emerg-
ing grammatical formalism with numerous applications in proof theory
and automated reasoning. We determine the computational complex-
ity of several decision problems on TRATGs: membership, containment,
disjointness, equivalence, minimization, and the complexity of minimal
cover with a fixed number of nonterminals. We relate non-parametric
minimal cover to a problem on regular word grammars of unknown
complexity.

1 Introduction

The grammatical formalism of totally rigid acyclic tree grammars (TRATGs)
originates in the proof-theoretical study of quantifier inferences in classical first-
order logic [8]. These grammars describe the instance terms in proofs with uni-
versally quantified prenex cuts. The generated language is finite and isomorphic
to a Herbrand disjunction (a tautological set of quantifier-free instances of the
proven formula) describing a cut-free proof.

This connection between proof theory and formal language theory has been
used for theoretical results on cut-elimination [10], lower bounds on the length of
proofs with cut [5], as well as in automated reasoning for lemma generation [6,9]
and automated inductive theorem proving [4]. Implementations of these appli-
cations are available in the GAPT system [7] for proof theory.

From an abstract point of view, this connection reveals a correspondence
between the combinatorial kernel of a proof with cut and the grammar-based
compression of a Herbrand disjunction, which is the essential information con-
tained in a cut-free proof. Grammar-based compression is a well-established
topic in formal language theory, popular grammar-based text compression algo-
rithms include [12,13,15,17]. Many compression techniques have been adapted
and extended to trees [1,14,18]. The smallest grammar problem is known to be
NP-complete [2,16] and several approximation algorithms are known. The most
important difference between the classical setting and ours is that a TRATG
does not compress a single string or tree but a finite set of trees. We compress
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with regard to the number of production rules as opposed to, e.g., the size of
the grammar as a binary string. Moreover, we cover the input language instead
of reproducing it exactly.

In this paper we study and determine the computational complexity of deci-
sion problems associated with TRATGs. In Sect. 2 we define TRATGs and their
derivations. In the following sections we show the complexity results as summa-
rized in Table 1. We consider the minimal cover problem for both TRATGs and
acyclic regular grammars on words in Sect. 8. The version of minimal cover where
the number of nonterminals is bounded by a fixed parameter is NP-complete in
both cases. Whether the unbounded minimal cover problem is NP-hard remains
open in either case.

Table 1. Main complexity results shown in this paper.

TRATG-Membership NP-complete Sect. 3, Theorem 1

TRATG-Containment ΠP
2 -complete Sect. 4, Theorem 2

TRATG-Disjointness coNP-complete Sect. 5, Theorem 3

TRATG-Equivalence ΠP
2 -complete Sect. 6, Theorem 4

TRATG-n-Cover NP-complete Sect. 7.1, Theorem 5

Regular-Cover NP Sect. 7.2, Lemma 3

TRATG-Minimization NP-complete Sect. 8, Theorem 7

Each of these decision problems on TRATGs corresponds to a decision prob-
lem on proofs: for instance, TRATG-Membership decides whether a formula is
contained in the Herbrand disjunction of a non-erasing cut-normal form.

2 Totally Rigid Acyclic Tree Grammars

We consider terms t ∈ T (Σ) over a signature Σ of function symbols with arity.
Constants and nonterminals are just functions with arity 0. We write f/n ∈ Σ if
the function symbol f has arity n ≥ 0. A substitution is defined by a finite map
that substitutes constants by other terms. We write σ = [c1\t1, . . . , cn\tn] for
the substitution σ that substitutes ci by ti. Substitutions use postfix notation:
tσ applies the substitution σ to the term t, and στ is the substitution such that
t(στ) = (tσ)τ for all terms t.

Definition 1 ([8]). A TRATG is a tuple G = (A, N,Σ, P ) such that:

1. A ∈ N is the start symbol,
2. N is a finite set of nonterminals,
3. Σ is a finite signature such that Σ ∩ N = ∅,
4. P ⊆ N ×T (Σ∪N) is a finite set of productions, writing B → r for (B, r) ∈ P ,
5. there exists a strict linear order ≺ on the nonterminals such that B ≺ C

whenever B → t ∈ P for some t that contains C.
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Example 1. Let N = {A,B}, Σ = {f/2, g/1, c/0, d/0}, and productions P such
that A → f(g(B), g(B)) | f(B,B) and B → c | d, then G = (A, N,Σ, P ) is a
TRATG with A ≺ B.

Total rigidity is a restriction on the derivations and is named after a corre-
sponding notion for regular tree automata [11]. For TRATGs it means that a
derivation may use at most one production per nonterminal. Due to the acyclicity
of the productions, the generated language L(G) is always finite.

Definition 2. Let G = (A, N,Σ, P ) be a TRATG. A derivation δ ⊆ P is a
subset of the productions such that for every nonterminal B ∈ N there is at
most one production B → t ∈ δ for some t.

A derivation δ induces a substitution σδ = [B1\t1] · · · [Bn\tn] where δ =
{B1 → t1, . . . ,Bn → tn} and B1 ≺ · · · ≺ Bn. The term L(δ) = Aσδ is the term
derived by δ. The generated language L(G) consists of all terms in T (Σ) that
are derivable in G.

In general there is of course more than one choice for the linearized order ≺,
however Definition 2 is invariant in the concrete choice of the order. We get
an equivalent notion of derivation if instead of the substitution σδ we consider a
sequence A ⇒∗ t where s ⇒ r if r = s[B\q] for some B → q ∈ δ. The substitution
σδ will be used for the proof of Lemma 1.

Example 2 (continuing Example 1). The derivation δ = {A → f(B,B),B → d}
derives the term f(d, d). In this way, we can compute the generated language
L(G) = {f(g(c), g(c)), f(g(d), g(d)), f(c, c), f(d, d)}. Note that there are no
“mixed” terms such as f(c, d).

3 Membership

We first determine the complexity of the membership problem for TRATGs.
The term in this problem is represented as a DAG instead of a tree since this
is required for the reductions in the following sections. The complexity of the
problem is however unchanged if we represent the term as a tree instead.

Problem 1 (TRATG-Membership). Given a TRATG G and a term t repre-
sented as a DAG, is t ∈ L(G)?

Clearly TRATG-Membership is in NP, since we can guess a derivation
(which is polynomially bounded in the size of G) and check whether t ∈ L(G).
By size, we always refers to the size of a representation in bits. Given sets A and
B, we write A ≤P B if there exists a polynomial-time many-to-one reduction
from A to B. For the NP-hardness of TRATG-Membership, we will show that
3SAT ≤P TRATG-Membership.

Problem 2 (3SAT). Given a propositional formula F in 3CNF, is F satisfiable?



294 S. Eberhard et al.

For simplicity, we assume that the formula F is represented in the following
syntax: the propositional variables occurring in F are exactly x1, . . . , xm, and
there are exactly n clauses, each containing at most 3 literals. Literals are either
xj or neg(xj) for some 1 ≤ j ≤ m. Clauses are written or(l1, l2, l3) where li is
true, false, or a literal for i ∈ {1, 2, 3}. The formula F is then and(c1, . . . , cn)
where ci is a clause for each 1 ≤ i ≤ n.

We can now define a TRATG Satn,m that will encode 3SAT for n clauses
and m variables. In fact, it will generate exactly the satisfiable CNFs. Rigidity
provides the main ingredient for this construction: since we can use at most one
production per nonterminal, we can “synchronize” across different clauses and
make sure that we assign consistent values to the propositional variables. Which
value we assign to the xj variable is determined by the choice of the production
for the Valuej nonterminal.

Definition 3. Let n,m > 0. We define a TRATG Satn,m = (A, N,Σ, P ). The
signature is Σ = {and/n, or/3, neg/1, false/0, true/0, x1/0, . . . , xm/0}. The
productions (and implicitly the nonterminals) are as follows, where 1 ≤ i ≤ n,
1 ≤ j ≤ m, and k ∈ {1, 2}:

A → and(Clause1, . . . ,Clausen)
Clausei → or(Truei,Anyi,1,Anyi,2)

Clausei → or(Anyi,1,Truei,Anyi,2)

Clausei → or(Anyi,1,Anyi,2,Truei)

Anyi,k → x1 | neg(x1) | · · · | xm | neg(xm) | false | true
Truei → Value1 | · · · | Valuem | true

Valuej → xj | neg(xj)

It is clear that Satn,m can be computed in polynomial time depending on n,
since m ≤ 3n and we only need to enumerate |P | = O(n2) productions.

Lemma 1. Let n,m > 0, and F be a propositional formula in 3CNF with exactly
n clauses and at most m variables. Then F ∈ L(Satn,m) iff F is satisfiable.

Proof. Let δ be a derivation of F in Satn,m. We define an interpretation Iδ

such that Iδ(xj) = 1 iff Valuej → xj ∈ δ, for all j ≤ m. Now we need to
show that indeed Iδ |= F . By case analysis on the chosen productions, we have
Iδ |= Valuejσδ for all 1 ≤ j ≤ m, then Iδ |= Trueiσδ and Iδ |= Clauseiσδ for all
1 ≤ i ≤ n, and hence Iδ |= F since F = Aσδ.

On the other hand, let F = and(c1, . . . , cn) and I |= F be a satisfying inter-
pretation. We construct a derivation δ with A → and(Clause1, . . . ,Clausen) ∈ δ,
Valuej → xj ∈ δ if I |= xj , and Valuej → neg(xj) ∈ δ if I �|= xj .

For 1 ≤ i ≤ n, we define the productions for Clausei, Anyi,1, Anyi,2, and
Truei depending on which literal is true in the i-th clause. Let or(l1, l2, l3) be
the i-th clause, and let j be such that l1 = xj or l1 = neg(xj). If I |= l1, we let
Clausei) → or(Truei,Anyi,1,Anyi,2) ∈ δ, Truei → Valuej ∈ δ, Anyi,1 → l2 ∈ δ
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and Anyi,2 → l3 ∈ δ. The cases where the second or third literal are true are
handled analogously. We can see that this set δ is then indeed a derivation of F
in Satn,m. �

Theorem 1. TRATG-Membership is NP-complete.

Proof. By reduction from 3SAT using Lemma 1. �

4 Containment

We now consider the problem of determining whether the generated languages
of two TRATGs are contained in one another:

Problem 3 (TRATG-Containment). Given TRATGs G1 and G2, is L(G1) ⊆
L(G2)?

The polynomial-time hierarchy is defined as usual, where ΣP
0 = ΠP

0 =
P, ΣP

n+1 = NP(ΠP
n ), and ΠP

n+1 = coNP(ΣP
n ). We will show that

TRATG-Containment is complete for ΠP
2 = coNP(NP). A canonical ΠP

n -
complete problem consists of deciding the truth of quantified Boolean formu-
las (QBF) in Πn, that is, closed prenex quantified Boolean formulas whose quan-
tifier prefix has n blocks alternating between blocks of universal and existential
quantifiers, starting with universal quantifiers. For TRATG-Containment, we
hence need Π2 formulas:

Problem 4 (Π2-TQBF). Given a closed QBF ∀y1 · · · ∀yk∃x1 · · · ∃xm F where F
is in 3CNF, is F true?

In the following we will now show that TRATG-Containment is ΠP
2 -hard

by reducing Π2-TQBF to it. Such a Π2-QBF is true if and only if the proposi-
tional matrix F is satisfiable for all instances of the universal quantifiers. Theo-
rem 1 shows that we can encode satisfiability as TRATG-Membership. It only
remains to encode the instantiation of the universal quantifiers as a TRATG.
We will thus define a TRATG that generates exactly the instances of the QBF
where we substitute the universal variables by either true or false:

Definition 4. Let Q = ∀y1 · · · ∀yk∃x1 · · · ∃xm F be a closed QBF such that F =
and(c1, . . . , cn) is in 3CNF. We define a TRATG InstQ = (A,N,Σ, P ). The sig-
nature is given by Σ = {and/n, or/3, neg/1, true/0, false/0, x1/0, . . . , xm/0}.
The productions and (implicitly) nonterminals are as follows:

A → F [y1\Y1, . . . , yk\Yk]
Yj → true | false for j ≤ k

Lemma 2. Let Q = ∀y1 · · · ∀yk∃x1 · · · ∃xm F be a closed QBF such that F =
and(c1, . . . , cn) is in 3CNF. Then Q is true iff L(InstQ) ⊆ L(Satn,k+m).
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Proof. The QBF Q is true if and only if every instance F [y1\v1, . . . , yk\vk]
is satisfiable where v1, . . . , vk ∈ {true, false}. The TRATG InstQ generates
exactly these instances. Hence Q is true iff L(InstQ) ⊆ L(Satn,m) by Lemma 1.

�
Theorem 2. TRATG-Containment is ΠP

2 -complete.

Proof. TRATG-Containment is in ΠP
2 because we can guess a derivation δ of a

term t in G1, and then check whether t ∈ L(G2). Each derivation can be produced
in polynomial time, and checking whether t ∈ L(G2) is in NP per Theorem 1.
For hardness, we reduce the ΠP

2 -complete Π2-TQBF to TRATG-Containment
via Lemma 2. �

5 Disjointness

The complexity of the disjointness problem follows straightforwardly from (the
complement of) TRATG-Membership.

Problem 5 (TRATG-Disjointness). Given TRATGs G1 and G2, is L(G1) ∩
L(G2) = ∅?

Theorem 3. TRATG-Disjointness is coNP-complete.

Proof. We first show that TRATG-Disjointness is in coNP: for all derivations
δ1 of a term t1 in G1 and δ2 of a term t2 in G2, we check that t1 �= t2. As usual
we can generate a derivation in polynomial time, and checking equality of terms
is polynomial as well. Hardness follows via a reduction from the complement of
TRATG-Membership: t �∈ L(G) if and only if L(G) ∩ L(Gt) = ∅, where Gt is a
TRATG such that L(Gt) = {t}. �

6 Equivalence

Problem 6 (TRATG-Equivalence). Given TRATGs G1 and G2, is L(G1) =
L(G2)?

Definition 5. Let G1 = (A1, N1, Σ1, P1), G2 = (A2, N2, Σ2, P2) be TRATGs
such that N1 ∩ N2 = ∅. Then G1 ∪ G2 = (A1, N1 ∪ N2, Σ1 ∪ Σ2, P

′), where
P ′ = P1 ∪ P2 ∪ {A1 → A2}.

It is easy to see that L(G1 ∪ G2) = L(G1) ∪ L(G2). We will also use the
notation G1∪G2 for TRATGs that share nonterminals: we then implicitly rename
the nonterminals in one TRATG so that they are disjoint.

Theorem 4. TRATG-Equivalence is ΠP
2 -complete.

Proof. We first show that it is in ΠP
2 via a reduction to TRATG-Containment:

L(G1) = L(G2) if and only if L(G1) ⊆ L(G2) as well as L(G2) ⊆ L(G1)—
and ΠP

2 is closed under intersection. Hardness follows by a reduction from
TRATG-Containment: L(G1) ⊆ L(G2) iff L(G1) ∪ L(G2) = L(G2). This is
equivalent to L(G1 ∪ G2) = L(G2), an instance of TRATG-Equivalence. �
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7 Minimal Cover

7.1 Minimal Cover for Terms

Let G = (A, N,Σ, P ) be a TRATG. We say that G covers a set of terms L if
L(G) ⊇ L, and write |G| = |P | for the number of productions in G. Finding a
small TRATG that covers a given finite set forms the combinatorial core of a
practical application in automated reasoning: the generation of quantified lem-
mas [6]. The finite set corresponds to a tautological set of instances, a Herbrand
disjunction. Since supersets of tautological disjunctions are tautological as well,
we require that the TRATG covers the given finite set of terms, as opposed to
L(G) = L. The covering TRATGs should have a small number of productions,
since they correspond to small proofs that are expected to contain interesting
lemmas. We consider a decision version of the problem:

Problem 7 (TRATG-Cover). Given a finite set of terms L and k ≥ 0, is there
a TRATG G such that |G| ≤ k and L(G) ⊇ L?

TRATG-Cover is in NP, since potential TRATGs G have at most |L| pro-
ductions, hence at most |L| nonterminals, and the size of each production is
bounded by the size of L.

Conjecture 1. TRATG-Cover is NP-complete.

So far a proof of Conjecture 1 remains elusive. However we will show that
the following version of TRATG-Cover with a fixed parameter is NP-complete:

Problem 8 (TRATG-n-Cover). Given a finite set of terms L and k ≥ 0, is there
a TRATG G = (A, N,Σ, P ) such that |N | ≤ n, |P | ≤ k, and L(G) ⊇ L?

Theorem 5. TRATG-n-Cover is NP-complete for n ≥ 2.

The proof of NP-hardness in the following Sect. 7.2 only requires regular
grammars for words. A similar approach to prove lower bounds for TRATGs
using regular grammars for words was already successfully used in descriptional
complexity [5].

7.2 Minimal Cover for Words

It is well known that we can represent words as trees by using unary function
symbols instead of letters. We may hence represent the word hello as the tree
h(e(l(l(o(ε))))), for example. Under this correspondence, TRATGs correspond
exactly to acyclic regular grammars:

Definition 6. A regular grammar G = (A, N,Σ, P ) is a tuple consisting of a
start symbol A ∈ N , a finite set of nonterminals N , a finite set of letters Σ such
that N ∩ Σ = ∅, and a finite set of productions P ⊆ N × Σ∗(N ∪ {ε}). We call
G acyclic if there exists a strict linear order ≺ on the nonterminals such that
B ≺ C whenever B → wC ∈ P for some w ∈ Σ∗.
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The one-step derivation relation ⇒G is defined by wB ⇒G wv for B → v ∈ P
and w ∈ Σ∗. The language L(G) = {w ∈ Σ∗ | A ⇒∗

G w} then consists of the
derivable words. We write |G| = |P | for the number of productions. In the
case of acyclic regular grammars, the derivations and the generated language
correspond exactly to those for TRATGs. Note that there is no need to require
rigidity for derivations here: derivations in acyclic regular grammars can never
use more than one production per nonterminal. Rigidity only plays a role for
terms, where we can have multiple parallel occurrences of a nonterminal.

Problem 9 (Regular-Cover). Given a finite set of words L and k ≥ 0, is there
an acyclic regular grammar G such that |G| ≤ k and L(G) ⊇ L?

Lemma 3. Regular-Cover ≤P TRATG-Cover.

Proof. Treat words as terms with unary function symbols and vice versa. �

Regular-Cover corresponds to TRATG-Cover, and is in NP. Further-
more, if Regular-Cover is NP-hard then so is TRATG-Cover. However the
precise complexity of Regular-Cover is open, similar to the case for terms we
conjecture it to be NP-complete.

Conjecture 2. Regular-Cover is NP-complete.

Clearly, Conjecture 2 implies Conjecture 1. In the rest of this section, we
will show that the restriction of Regular-Cover to a bounded number of
nonterminals is NP-hard.

Problem 10 (Regular-n-Cover). Given a finite set of words L and k ≥ 0, is
there an acyclic regular grammar G = (A, N,Σ, P ) such that |N | ≤ n, |P | ≤ k,
and L(G) ⊇ L?

We will show the NP-hardness of Regular-n-Cover in several steps: first
we reduce 3SAT to Regular-2-Cover using an intermediate problem where
we can not only specify words that must be generated by the grammar, but also
productions that must be included:

Problem 11 (Regular-2-Cover-Extension). Given a finite set of words L, an
acyclic regular grammar G = (A, N,Σ, P ) such that N = {A,B}, w contains B
whenever A → w ∈ P , and k ≥ 0, is there a superset P ′ ⊇ P of the productions
such that |P ′| ≤ |P | + k, and L(G′) ⊇ L where G′ = (A, N,Σ, P ′)?

Lemma 4. 3SAT ≤P Regular-2-Cover-Extension.

Proof. Consider a propositional formula in CNF with m clauses C1, . . . , Cm and
n variables (called x1, . . . , xn). The number of variables n will be used as the
k parameter in Regular-2-Cover-Extension. Assume without loss of gener-
ality that xj ∨ ¬xj is a clause in this formula for all j ≤ n. We will encode the
literals as unary natural numbers. First we define the natural numbers aj = 2j
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and bj = 2j + 1 that correspond to xj and ¬xj , resp. The number c = 2n + 1 is
their upper bound.

Let L = {scol,i | i ≤ m, l ≤ 2n} and Σ = {ol,i | l ≤ 2n, i ≤ n} ∪ {s}.
Furthermore, define the acyclic regular grammar G = (A, N,Σ, P ) where N =
{A,B}, and the productions P are the following:

B → sc−ajol,i for xj ∈ Ci and l ≤ 2n

B → sc−bjol,i for ¬xj ∈ Ci and l ≤ 2n

It remains to show that F is satisfiable iff there exists a set of productions P ′ ⊇ P
such that |P ′| ≤ |P | + n and L(G′) ⊇ L where G′ = (A, N,Σ, P ′).

Left-to-right direction. Let I |= F be a satisfying interpretation, then we con-
struct an acyclic regular grammar G′ by adding the following productions to G.
We clearly have |G′| = |G| + n, and also L(G′) ⊇ L.

A → sajB if I |= xj A → sbjB if I �|= xj

Right-to-left direction. Let G′ = (A, N,Σ, P ′) such that P ′ ⊇ P , L(G′) ⊇ L, and
|P ′| ≤ |P | + n. By symmetry, all productions from the nonterminal A are of the
form A → srB for some r ≥ 0. Otherwise there would be an i ≤ m such that all
constants ol,i appear in productions from A, and we would have at least 2n new
productions.

Let δ be a derivation of scol,i ∈ L in G′. Then δ uses the production A → srB
for some r, and we have that r = aj and xj ∈ Ci or r = bj and ¬xj ∈ Ci. Since
xj ∨ ¬xj ∈ F for all j ≤ n, we have A → sajB ∈ P ′ or A → sbjB ∈ P ′ for
all j ≤ n. Because there are at most n such productions, we cannot have both
sajB ∈ P ′ and sbjB ∈ P ′.

Now define an interpretation I such that I |= xj iff A → sajB ∈ P ′. Note
that I �|= xj iff A → sbjB ∈ P ′, and hence I is a model for F by the previous
paragraph. �

Lemma 5. Regular-2-Cover-Extension ≤P Regular-2-Cover.

Proof. Let L, G = (A, N,Σ, P ), N = {A,B}, and k be as in the definition of
Regular-2-Cover-Extension. We set m = |L|+ |G|. Without loss of general-
ity, assume that L �= ∅. Take 4m fresh letters a1, . . . , a3m, b1, . . . , bm. We extend
the language L to L′:

L′ = L ∪ {aiw | B → w ∈ P, i ≤ 3m}
∪ {wbj | A → wB ∈ P, j ≤ m}
∪ {aibj | i ≤ 3m, j ≤ m}

We need to show that there exists an acyclic regular grammar G′ = (A, N,Σ′, P ′)
with Σ′ = Σ ∪ {a1, . . . , a3m, b1, . . . , bm} such that L(G′) ⊇ L′ and |G′| ≤ |G| +
k+4m if and only if there exists an acyclic regular grammar G′′ = (A, N,Σ, P ′′)
such that P ⊆ P ′′, |G′′| ≤ |G| + k, and L(G′) ⊇ L.
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Left-to-right direction. Let us first assume that such a grammar G′ exists. We can
assume that |G′| ≤ |L|+ |G|+4m = 5m since there exists a covering grammar of
that size with the productions {A → w | w ∈ L}∪P ∪{A → ai | i ≤ 3m}∪{B →
bj | j ≤ m}.

Without loss of generality, assume that the letters ai occur only as the first
letter of productions of the nonterminal A. We can drop any production that
contains ai in the middle since ai can only occur at the beginning of words in L′.
For the same reason we can then replace each production B → aiw by A → aiw.

Furthermore, we can assume that G′ is symmetric in the new symbols, that
is, A → aiw ∈ P ′ if and only if A → ajw ∈ P ′ for all i, j ≤ 3m and words w.
Otherwise pick an i ≤ 3m such that W = {w | A → aiw ∈ P ′} is of minimal
size. We then remove all productions containing an aj for some j ≤ 3m, and
replace them by the productions A → ajw for w ∈ W . The resulting grammar
still covers L′ since L′ is symmetric under permutation of the letters ai.

Now for every i ≤ 3m there is at most one production of the form A → aiw
for some w—if there were two, then by ai-symmetry we would have 2 · 3m = 6m
productions, exceeding the previously obtained upper bound of 5m productions.
This also implies that B → bj ∈ P ′ for all j ≤ m. By a symmetry argument for
bj there are no other productions that contain bj . We also have that B → w ∈ P ′

whenever B → w ∈ P .
We can now construct the acyclic regular grammar G′′ by removing all pro-

ductions from G′ that contain one of the new symbols ai or bj . We have L(G′′) ⊇
L since L(G′) ⊇ L and because productions that contain the new symbols cannot
be used in derivations of words in L. Furthermore, |G′′| ≤ |G′| − 4m = |G| + k.
It remains to show that A → wB ∈ P ′ whenever A → wB ∈ P for some w ∈ Σ∗.
Recall that L′ contains wbj for all j ≤ m. However the only occurrence of bj in
P ′ is in the production B → bj ∈ P ′. Hence A → wB ∈ P ′.

Right-to-left direction. In the other case, we assume that such a grammar G′′

exists, and need to construct G′. We obtain this grammar G′ by adding the
productions A → aiB and B → bj for all i ≤ 3m and j ≤ m. Then G′ has 4m
more productions than G′′ and covers L′. �

Lemma 6. Regular-n-Cover ≤P Regular-(n + 1)-Cover.

Proof. Let L be a finite set of words, k ≥ 0, and define m = 2k. Assume that
|L| ≥ 1, k ≥ 2, and n ≥ 1—otherwise we can directly compute the answer. Take
m+1 fresh letters a1, . . . , am, b. We define L′ = {a1, . . . , am}·(L∪{b}). It remains
to show that there exists an acyclic regular grammar G with n nonterminals such
that |G| ≤ k and L(G) ⊇ L if and only if there exists an acyclic regular grammar
G′ with n + 1 nonterminals such that |G′| ≤ k + m + 1 and L(G′) ⊇ L′.

Left-to-right direction. Let G = (B, N,Σ, P ) be an acyclic regular grammar such
that |N | = n, |G| ≤ k, and L(G) ⊇ L. We set G′ = (A, N ∪ {A}, Σ ∪ Σ′, P ∪ P ′)
where A is a fresh nonterminal, Σ′ = {a1, . . . , am, b}, and P ′ = {A → aiB | i ≤
m} ∪ {B → b}. Clearly |N ∪ {A}| = n + 1, |G′| = |G| + m + 1 ≤ k + m + 1, and
L(G′) ⊇ L′.
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Right-to-left direction. Let G′ = (A, N,Σ, P ′) be an acyclic regular grammar
such that |N | = n+1, |G| ≤ k +m+1, and L(G′) ⊇ L′. Via the same argument
as used in the proof of Lemma 5 and noting that 2m > k + m, we can assume
that there exists a nonterminal B �= A such that all productions from A are of
the form A → aiB for some i ≤ m. Let P ⊆ P ′ be the set of productions whose
left side is not A and whose right side is not b. The acyclic regular grammar
G = (B, N \ {A}, Σ, P ) then has the desired properties. �

Theorem 6. Regular-n-Cover is NP-complete for n ≥ 2.

Proof. By reduction from 3SAT using Lemma 4 to 6. �

Theorem 5, the NP-completeness of TRATG-n-Cover, now directly follows
from Theorem 6.

8 Minimization

Problem 12 (TRATG-Minimization). Given a TRATG G = (A, N,Σ, P ), a
set of terms L such that L(G) ⊇ L, and k ≥ 0, is there a subset P ′ ⊆ P of the
productions such that |P ′| ≤ k and L(G′) ⊇ L where G′ = (A, N,Σ, P ′)?

This optimization problem plays a central role in a practical algorithm [3] to
find minimal TRATGs which cover a given set of terms, as in TRATG-n-Cover.
We will now show that TRATG-Minimization is NP-complete via reduction
from Set Cover.

Problem 13 (Set Cover). Given a finite set X, a finite collection C ⊆ P(X) of
subsets such that

⋃
C = X, and k ≥ 0, is there a sub-collection C ′ ⊆ C such

that
⋃

C = X and |C ′| ≤ k?

Theorem 7. TRATG-Minimization is NP-complete.

Proof. The problem is in NP because we can check |P ′| ≤ k in polynomial time,
and reduce L(G′) ⊇ L to TRATG-Membership. Hardness follows by reduction
from Set Cover: we pick a fresh nonterminal A, set N = {A} ∪ C (treating
the subsets as nonterminals), L = X, and P = {A → U | U ∈ C} ∪ {U →
x | x ∈ U ∈ C}. A subset P ′ ⊆ P of the productions of with k + |X| elements
then directly corresponds to a sub-collection C ′ of such that |C ′| ≤ k: for every
x ∈ X, there is at least one production U → x ∈ P ′ for some U ∈ C. These are
|X| productions, there are hence at most k productions of the form A → U for
some U , which yield the sub-collection C ′ = {U | A → U ∈ P ′}. �

9 Conclusion

We have determined the computational complexity of the membership, contain-
ment, disjointness, equivalence, and minimization problems on TRATGs. For
minimal cover we could only determine the complexity of a variant where the
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number of nonterminals is bounded. The complexity of minimal cover without
a fixed parameter remains unknown, even for regular grammars on words.

The reductions in this paper generally use an unbounded number of symbols.
In particular, the reductions for minimal cover require this unboundedness in an
essential way to constrain the covering grammar. It remains as future work to
study reductions which do not increase the number of symbols.

Each of these decision problems directly corresponds to a decision problem
in proof theory concerning the result of non-erasing cut-elimination. Showing
that minimal cover is polynomial-time decidable could lead to fast compression
algorithms using TRATGs, which can immediately be used for applications in
automated deduction [6].

Acknowledgments. The authors would like to thank the reviewers for many helpful
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