Complexity of decision problems on totally rigid acyclic tree grammars

Sebastian Eberhard Gabriel Ebner Stefan Hetzl
DLT 2018
2018-09-11
TU Wien

Totally rigid acyclic tree grammars

Decision problems

Minimal cover

Conclusion

Totally rigid acyclic tree grammars

- Generate finite set of terms/trees
- TRATG is a tuple $G=(\mathrm{A}, N, \Sigma, P)$:
- Start nonterminal $\mathrm{A} \in N$
- Nonterminals N (arity 0)
- Function symbols Σ
- Productions $B \rightarrow t$ where $B \in N$ and t a term
- acyclic: $\mathrm{B}_{1} \rightarrow \mathrm{t}_{1}\left[\mathrm{~B}_{2}\right], \ldots, \mathrm{B}_{n} \rightarrow t_{n}\left[\mathrm{~B}_{1}\right]$ disallowed

Derivations

- $t[B] \rightarrow t[s]$ where $B \rightarrow s \in P$
- $\mathrm{A} \rightarrow{ }^{*} t$
- totally rigid: at most one production per nonterminal
- c.f. rigid tree automata (Jacquemard 2011)
- choice of productions completely determines derived term
- $L(G)=\left\{t \mid A \rightarrow^{*} t\right\}=\left\{\mathrm{B}_{1}\left[\mathrm{~B}_{1} \backslash t_{1}\right] \ldots\left[\mathrm{B}_{n} \backslash t_{n}\right] \mid \mathrm{B}_{1}=\mathrm{A}, \forall i \mathrm{~B}_{i} \rightarrow t_{i} \in P\right\}$

TRATG example

$$
G=(\mathrm{A},\{\mathrm{~A}, \mathrm{~B}\},\{\mathrm{f} / 2, \mathrm{~g} / 2, \mathrm{c} / 0, \mathrm{~d} / 0\}, \mathrm{P})
$$

$$
P=\left\{\begin{array}{l}
\mathrm{A} \rightarrow \mathrm{f}(\mathrm{~B}, \mathrm{~B}) \mid \mathrm{g}(\mathrm{~B}, \mathrm{~B}) \\
\mathrm{B} \rightarrow \mathrm{c} \mid \mathrm{d}
\end{array}\right.
$$

TRATG example

$$
G=(\mathrm{A},\{\mathrm{~A}, \mathrm{~B}\},\{\mathrm{f} / 2, \mathrm{~g} / 2, \mathrm{c} / 0, \mathrm{~d} / 0\}, \mathrm{P})
$$

$$
P=\left\{\begin{array}{l}
\mathrm{A} \rightarrow \mathrm{f}(\mathrm{~B}, \mathrm{~B}) \mid \mathrm{g}(\mathrm{~B}, \mathrm{~B}) \\
\mathrm{B} \rightarrow \mathrm{c} \mid \mathrm{d}
\end{array}\right.
$$

$$
\mathrm{A} \rightarrow \mathrm{f}(\mathrm{~B}, \mathrm{~B}) \rightarrow \mathrm{f}(\mathrm{c}, \mathrm{c})
$$

TRATG example

$$
\begin{gathered}
G=(A,\{A, B\},\{f / 2, g / 2, c / 0, d / 0\}, P) \\
P=\left\{\begin{array}{l}
A \rightarrow f(B, B) \mid g(B, B) \\
B \rightarrow c \mid d
\end{array}\right. \\
A \rightarrow f(B, B) \rightarrow f(c, c) \\
L(G)=\{f(c, c), f(d, d), g(c, c), g(d, d)\}
\end{gathered}
$$

Proof theory

proof with Π_{1}-cuts cut-free proof

TRATG
Language \simeq Herbrand disjunction

Applications in proof theory

- nonterminal $\widehat{=}$ (quantifier in) Π_{1}-cut
- production $\widehat{=}$ quantifier inference
- generated term $\widehat{=}$ instance in Herbrand disjunction
- Lower bounds on compressibility using TRATGs translate to proofs (Eberhard, Hetzl 2018)
- Compression using small covering grammars \rightarrow interesting lemmas (E, Hetzl, Leitsch, Reis, Weller 2018)
\rightarrow Open source GAPT framework for proof theory: https://logic.at/gapt

Totally rigid acyclic tree grammars

Decision problems

Minimal cover

Conclusion

Membership

Problem (Membership)
 Given a TRATG G and a term t, is $t \in L(G)$?

Membership

Problem (Membership)

Given a TRATG G and a term t, is $t \in L(G)$?
Claim: NP-complete.

- Derivations of t are w.l.o.g. polynomial in the size of t and G (dag-like!).

$$
\mathrm{A} \rightarrow \mathrm{~A}\left[\mathrm{~A} \backslash \mathrm{~s}_{1}\right] \rightarrow \mathrm{A}\left[\mathrm{~A} \backslash \mathrm{~s}_{1}\right]\left[\mathrm{B} \backslash \mathrm{~s}_{2}\right] \rightarrow \ldots \rightarrow t
$$

Can check in polynomial time whether such a sequence of terms is a derivation of t in G.

- Hardness: next slide.

Membership (NP-hardness): encoding SAT

$L\left(\right.$ Sat $\left._{n, m}\right)=$ satisfiable 3 -CNFs with n clauses and m variables:

$$
\begin{aligned}
\mathrm{A} & \rightarrow \text { and }\left(\text { Clause }_{1}, \ldots, \text { Clause }_{n}\right) \\
\text { Clause }_{i} & \rightarrow \text { or }\left(\text { True }_{i}, \text { Any }_{i, 1}, \text { Any }_{i, 2}\right) \\
\text { Clause }_{i} & \rightarrow \operatorname{or}\left(\text { Any }_{i, 1}, \text { True }_{i}, \text { Any }_{i, 2}\right) \\
\text { Clause }_{i} & \rightarrow \text { or }\left(\text { Any }_{i, 1}, \text { Any }_{i, 2}, \text { True }_{i}\right) \\
\text { Any }_{i, k} & \rightarrow \mathrm{x}_{1}\left|\operatorname{neg}\left(\mathrm{x}_{1}\right)\right| \cdots\left|\mathrm{x}_{m}\right| \operatorname{neg}\left(\mathrm{x}_{m}\right) \mid \text { false } \mid \text { true } \\
\text { True }_{i} & \rightarrow \text { Value }_{1}|\cdots| \text { Value }_{m} \mid \text { true } \\
\text { Value }_{j} & \rightarrow \mathrm{x}_{j} \mid \operatorname{neg}\left(\mathrm{x}_{j}\right)
\end{aligned}
$$

Containment

Problem (Containment) Given TRATGs G_{1} and G_{2}, is $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?

Containment

Problem (Containment)

Given TRATGs G_{1} and G_{2}, is $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
Claim: Π_{2}^{P}-complete

- In Π_{2}^{P} : for every sequence of terms check if it is a derivation of a term t in G_{1}, and then if $t \in L\left(G_{2}\right)$.

Containment ($\Pi_{2}^{\mathcal{P}}$-hardness)

- Determining the truth of a quantified Boolean formula $\forall \mathrm{y}_{1} \ldots \forall \mathrm{y}_{k} \exists \mathrm{x}_{1} \ldots \exists \mathrm{x}_{m} f$ is Π_{2}^{P}-complete. (f in 3 -CNF)
- $f \sigma$ satisfiable for any $\sigma:\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{k}\right\} \rightarrow\{$ true, fal se $\}$?
- $\left\{f_{\sigma} \mid \sigma:\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{k}\right\} \rightarrow\{\right.$ true, false$\left.\}\right\} \subseteq L\left(\right.$ Sat $\left._{n, m}\right)$?
- Left side is generated by a TRATG:

$$
\begin{aligned}
\mathrm{A} & \rightarrow f\left[\mathrm{y}_{1} \backslash \mathrm{Y}_{1}, \ldots, \mathrm{y}_{k} \backslash \mathrm{Y}_{k}\right] \\
\mathrm{Y}_{j} & \rightarrow \text { true } \mid \text { false }
\end{aligned}
$$

Summary

$$
\begin{array}{ll}
t \in L(G) & \text { NP-complete } \\
L\left(G_{1}\right) \subseteq L\left(G_{2}\right) & \Pi_{2}^{p} \text {-complete } \\
L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset & \text { coNP-complete } \\
L\left(G_{1}\right)=L\left(G_{2}\right) & \Pi_{2}^{p} \text {-complete }
\end{array}
$$

Totally rigid acyclic tree grammars

Decision problems

Minimal cover

Conclusion

Minimal cover

Problem (Minimal TRATG cover)
Given $k \geq 0$ and finite set of terms L, is there a TRATG $G=(A, N, \Sigma, P)$
such that $|P| \leq k$ and $L(G) \supseteq L$?

Minimal cover

Problem (Minimal regular cover)
Given $k \geq 0$ and finite set of words L, is there a acyclic regular grammar $G=(A, N, \Sigma, P)$
such that $|P| \leq k$ and $L(G) \supseteq L$?

Minimal n-cover

Problem (Minimal regular n-cover)
Given $k \geq 0$ and finite set of words L, is there a acyclic regular grammar $G=(\mathrm{A}, N, \Sigma, P)$
such that $|P| \leq k$ and $L(G) \supseteq L$, and $|N| \leq n$?

Complexity of minimal cover

hardness \longleftarrow

\# nonterminals	terms	words
unbounded	$?$	$?$
bounded	NP-complete	NP-complete
	membership \longrightarrow	

- For $L(G)=L$, see talk by Gruber, Holzer, Wolfsteiner after lunch.

NP-completeness of minimal regular n-cover

Theorem

Minimal regular/TRATG n-cover is NP-complete ($n \geq 2$).

Proof.

NP-membership by reduction to membership. Hardness:

SAT \leq_{p} Minimal regular 2-cover-extension
\leq_{p} Minimal regular 2-cover
\leq_{p} Minimal regular 3-cover
$\leq p \ldots$
\leq_{p} Minimal regular n-cover

Totally rigid acyclic tree grammars

Decision problems

Minimal cover

Conclusion

Conclusion

- Membership, containment, disjointness, equivalence are hard
- Because of equality constraints (due to total rigidity)
- Complexity of minimal cover remains unknown, even for acyclic regular (word) grammars

SAT \leq_{p} Minimal regular 2-cover-extension

m clauses, n variables: x_{1}, \ldots, x_{n}.

$$
\begin{array}{ll}
N=\{\mathrm{A}, \mathrm{~B}\} & \mathrm{x}_{i} \text { true: } \\
L(G) \supseteq\left\{\mathrm{s}^{2 n+1} \mathrm{o}_{l, j} \mid i \leq m, l \leq 2 n\right\} & \mathrm{A} \rightarrow \mathrm{~s}^{2 j} \mathrm{~B} \rightarrow \mathrm{~s}^{2 j} \mathrm{~s}^{2 n+1-2 j} \mathrm{o}_{l, i} \\
P \supseteq\left\{\mathrm{~B} \rightarrow \mathrm{~s}^{2 n-2 j} \mathrm{o}_{l, i} \mid \mathrm{x}_{j} \in C_{i}, l \leq 2 n\right\} & \\
P \supseteq\left\{\mathrm{~B} \rightarrow \mathrm{~s}^{2 n+1-2 j} \mathrm{o}_{l, i} \mid \neg \mathrm{x}_{j} \in C_{i}, l \leq 2 n\right\} & \mathrm{x}_{i} \text { false: } \\
|P| \leq n+2 n \sum_{i}\left|C_{i}\right| & \mathrm{A} \rightarrow \mathrm{~s}^{2 j+1} \mathrm{~B} \rightarrow \mathrm{~s}^{2 j+1} \mathrm{~s}^{2 n-2 j} \mathrm{o}_{l, i}
\end{array}
$$

$\rightarrow \quad I \neq \mathrm{x}_{j} \quad$ iff $\quad G$ contains production $\mathrm{A} \rightarrow \mathrm{s}^{2 j} \mathrm{~B}$

