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Totally rigid acyclic tree grammars

• Generate finite set of terms/trees

• TRATG is a tuple G = (A,N,Σ,P):
• Start nonterminal A ∈ N
• Nonterminals N (arity 0)
• Function symbols Σ
• Productions B→ t where B ∈ N and t a term

• acyclic: B1 → t1[B2], . . . ,Bn → tn[B1] disallowed
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Derivations

• t[B]→ t[s] where B→ s ∈ P
• A→∗ t

• totally rigid: at most one production per nonterminal
• c.f. rigid tree automata (Jacquemard 2011)
• choice of productions completely determines derived term

• L(G) = {t | A→∗ t} = {B1[B1\t1] . . . [Bn\tn] | B1 = A, ∀i Bi → ti ∈ P}
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TRATG example

G = (A, {A,B}, {f/2,g/2,c/0,d/0},P)

P =

{
A→ f(B,B) | g(B,B)

B→ c | d

A→ f(B,B)→ f(c,c)

L(G) = {f(c,c),f(d,d),g(c,c),g(d,d)}
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Proof theory

π

G(π)

π∗

L(G(π))

cut-elimination

proof with Π1-cuts cut-free proof

TRATG Language ≃ Herbrand disjunction
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Applications in proof theory

• nonterminal =̂ (quantifier in) Π1-cut
• production =̂ quantifier inference
• generated term =̂ instance in Herbrand disjunction

• Lower bounds on compressibility using TRATGs translate to proofs
(Eberhard, Hetzl 2018)

• Compression using small covering grammars→ interesting lemmas
(E, Hetzl, Leitsch, Reis, Weller 2018)

→ Open source GAPT framework for proof theory: https://logic.at/gapt
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Membership

Problem (Membership)
Given a TRATG G and a term t, is t ∈ L(G)?

Claim: NP-complete.

• Derivations of t are w.l.o.g. polynomial in the size of t and G (dag-like!).

A→ A[A\s1]→ A[A\s1][B\s2]→ . . .→ t

Can check in polynomial time whether such a sequence of terms is a
derivation of t in G.

• Hardness: next slide.
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Membership (NP-hardness): encoding SAT

L(Satn,m) = satisfiable 3-CNFs with n clauses and m variables:

A→ and(Clause1, . . . ,Clausen)
Clausei → or(Truei,Anyi,1,Anyi,2)
Clausei → or(Anyi,1,Truei,Anyi,2)
Clausei → or(Anyi,1,Anyi,2,Truei)
Anyi,k → x1 | neg(x1) | · · · | xm | neg(xm) | false | true
Truei → Value1 | · · · | Valuem | true

Valuej → xj | neg(xj)
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Containment

Problem (Containment)
Given TRATGs G1 and G2, is L(G1) ⊆ L(G2)?

Claim: ΠP2-complete

• In ΠP2 : for every sequence of terms check if it is a derivation of a term t in G1,
and then if t ∈ L(G2).
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Containment (ΠP
2-hardness)

• Determining the truth of a quantified Boolean formula
∀y1 . . . ∀yk∃x1 . . . ∃xm f is ΠP2-complete. (f in 3-CNF)

• fσ satisfiable for any σ : {y1, . . . ,yk} → {true,false}?
• {fσ | σ : {y1, . . . ,yk} → {true,false}} ⊆ L(Satn,m)?
• Left side is generated by a TRATG:

A→ f[y1\Y1, . . . ,yk\Yk]

Yj → true | false
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Summary

t ∈ L(G) NP-complete

L(G1) ⊆ L(G2) ΠP2-complete

L(G1) ∩ L(G2) = ∅ coNP-complete

L(G1) = L(G2) ΠP2-complete
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Minimal cover

Problem (Minimal TRATG cover)
Given k ≥ 0 and finite set of terms L,
is there a TRATG G = (A,N,Σ,P)
such that |P| ≤ k and L(G) ⊇ L?
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Minimal cover

Problem (Minimal regular cover)
Given k ≥ 0 and finite set of words L,
is there a acyclic regular grammar G = (A,N,Σ,P)
such that |P| ≤ k and L(G) ⊇ L?
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Minimal n-cover

Problem (Minimal regular n-cover)
Given k ≥ 0 and finite set of words L,
is there a acyclic regular grammar G = (A,N,Σ,P)
such that |P| ≤ k and L(G) ⊇ L, and |N| ≤ n?
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Complexity of minimal cover

hardness←−

# nonterminals terms words
unbounded ? ?
bounded NP-complete NP-complete

membership −→

• For L(G) = L, see talk by Gruber, Holzer, Wolfsteiner after lunch.

17



NP-completeness of minimal regular n-cover

Theorem
Minimal regular/TRATG n-cover is NP-complete (n ≥ 2).

Proof.
NP-membership by reduction to membership. Hardness:

SAT ≤P Minimal regular 2-cover-extension
≤P Minimal regular 2-cover
≤P Minimal regular 3-cover
≤P . . .

≤P Minimal regular n-cover
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Conclusion

• Membership, containment, disjointness, equivalence are hard
• Because of equality constraints (due to total rigidity)

• Complexity of minimal cover remains unknown,
even for acyclic regular (word) grammars
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SAT ≤P Minimal regular 2-cover-extension

m clauses, n variables: x1, . . . ,xn.

N = {A,B}
L(G) ⊇ {s2n+1ol,i | i ≤ m, l ≤ 2n}
P ⊇ {B→ s2n−2jol,i | xj ∈ Ci, l ≤ 2n}
P ⊇ {B→ s2n+1−2jol,i | ¬xj ∈ Ci, l ≤ 2n}
|P| ≤ n+ 2n

∑
i |Ci|

xi true:
A→ s2jB→ s2js2n+1−2jol,i

xi false:
A→ s2j+1B→ s2j+1s2n−2jol,i

→ I |= xj iff G contains production A→ s2jB
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