Herbrand constructivization for automated intuitionistic theorem proving

Gabriel Ebner TABLEAUX 2019 2019-09-03

TU Wien

Introduction

Constructivization procedure

Empirical evaluation

Conclusion

Automated intuitionistic theorem proving

- Many proof assistants use intuitionistic logic
 - Coq, Agda, ...
 - some foundations even prove $\neg \forall p \ (p \lor \neg p)$
 - · e.g. homotopy type theory
- Program synthesis via Curry-Howard

Automated intuitionistic theorem provers

- Connection calculus
 - ileanCoP, ...
- Inverse method
 - imogen, ...
- Intuitionistic Logic Theorem Proving library (ILTP; Raths, Otten, Kreitz 2006)
 - 2670 first-order problems
 - In total 1154 problems solved by existing provers
 - Vampire (classical prover) solves 2420

Proof constructivization

• Transform a classical proof into an intuitionistic proof

 $\rightarrow\,$ Use a really good classical prover, and then constructivize its proofs

Proof constructivization

Possible on multiple levels:

- Sequent calculus proofs
 - Glivenko classes (Orevkov 1968)
 - Recently for LK proofs generated by Zenon (Cauderlier 2016, Gilbert 2017)

- Lists of formulas (subsequents of the end-sequent)
 - Use classical prover to filter out assumptions
 - Often used in "hammers" for proof assistants
 - · Requires another first-order prover

Proof constructivization

Possible on multiple levels:

- Sequent calculus proofs
 - Glivenko classes (Orevkov 1968)
 - Recently for LK proofs generated by Zenon (Cauderlier 2016, Gilbert 2017)
- Expansion proofs (\simeq quantifier inferences; our approach)
- Lists of formulas (subsequents of the end-sequent)
 - Use classical prover to filter out assumptions
 - Often used in "hammers" for proof assistants
 - · Requires another first-order prover

Herbrand's theorem

Theorem (special case of Herbrand 1930)

Let $\varphi(x)$ be a quantifier-free first-order formula.

Then $\exists x \varphi(x)$ is valid in classical logic iff there exist terms t_1, \ldots, t_n such that $\varphi(t_1) \vee \cdots \vee \varphi(t_n)$ is a quasi-tautology.

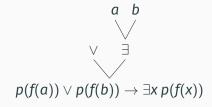
Quasi-tautology = tautology modulo equality.

Expansion proofs generalize to HOL (Miller 1987)

6

Expansion trees/proofs

Natural data structure for non-prenex formulas



 c.f. global substitution in tableaux provers, quantifier instances in SMT solvers

Why expansion proofs?

- · Abstracts away from propositional reasoning
 - · and also equational reasoning!
- · Deskolemization is straightforward
 - Skolemization unsound as preprocessing:

$$(\neg \forall x \ P(x)) \to \exists x \ \neg P(x)$$
$$(\neg P(c)) \to \exists x \ \neg P(x)$$

Introduction

Constructivization procedure

Empirical evaluation

Conclusion

Problem statement

Given an expansion proof *E* of a sequent *S*, find a cut-free proof in mLJ using only quantifier inferences from *E*

(without repeating an eigenvariable inference on any thread of the proof)

mLJ = multi-succedent calculus for intuitionistic logic (Maehara 1954)

Maehara's multi-succedent calculus (mLJ)

$$\frac{\neg \varphi \vdash \varphi}{\varphi \vdash \varphi} \text{ ax } \frac{\Gamma \vdash \Delta}{\varphi, \Gamma \vdash \Delta} w_{l} \frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, \varphi} w_{r} \frac{\Gamma \vdash \Delta, \varphi}{\Gamma, \Pi \vdash \Delta, \Lambda} \text{ cut}$$

$$\frac{\neg \varphi \vdash \varphi}{\neg \varphi, \Gamma \vdash \Delta} \text{ rfl} \frac{\Gamma \vdash \Delta, \varphi(t)}{\Gamma, t = s \vdash \Delta, \varphi(s)} \text{ eq}_{r}^{\rightarrow} \frac{\Gamma \vdash \Delta, \varphi(s)}{\Gamma, t = s \vdash \Delta, \varphi(t)} \text{ eq}_{r}^{\leftarrow}$$

$$\frac{\varphi(t), \Gamma \vdash \Delta}{\varphi(s), \Gamma, t = s \vdash \Delta} \text{ eq}_{l}^{\rightarrow} \frac{\varphi(s), \Gamma \vdash \Delta}{\varphi(t), \Gamma, t = s \vdash \Delta} \text{ eq}_{l}^{\leftarrow}$$

$$\frac{\varphi(t), \Gamma \vdash \Delta}{\varphi(s), \Gamma, t = s \vdash \Delta} \text{ eq}_{l}^{\rightarrow} \frac{\varphi(s), \Gamma \vdash \Delta}{\varphi(t), \Gamma, t = s \vdash \Delta} \text{ eq}_{l}^{\leftarrow}$$

$$\frac{\varphi(t), \Gamma \vdash \Delta}{\varphi(s), \Gamma, t = s \vdash \Delta} \text{ eq}_{l}^{\leftarrow}$$

$$\frac{\varphi(t), \Gamma \vdash \Delta}{\varphi \lor \psi, \Gamma \vdash \Delta} \lor_{l}$$

$$\frac{\varphi(t), \Gamma \vdash \Delta}{\varphi \lor \psi, \Gamma \vdash \Delta} \to_{l}$$

$$\frac{\varphi(t), \Gamma \vdash \Delta}{\varphi \lor \psi, \Gamma \vdash \Delta} \to_{l}$$

$$\frac{\varphi(t), \Gamma \vdash \Delta}{\varphi \lor \psi, \Gamma \vdash \Delta} \to_{l}$$

$$\frac{\Gamma \vdash \Delta, \varphi(t)}{\Gamma \vdash \Delta, \exists x \varphi(x)} \exists_{r} \frac{\varphi(\alpha), \Gamma \vdash \Delta}{\exists x \varphi(x), \Gamma \vdash \Delta} \exists_{l} \frac{\varphi(t), \Gamma \vdash \Delta}{\forall x \varphi(x), \Gamma \vdash \Delta} \lor_{l}$$

$$\frac{\Gamma \vdash \varphi(\alpha)}{\Gamma \vdash \forall x \varphi(x)} \lor_{r}$$

Maehara's multi-succedent calculus (mLJ)

• Only three restrictions on the succedent:

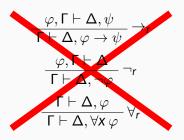
$$\frac{\varphi, \Gamma \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \to \psi} \to_{r}$$

$$\frac{\varphi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg \varphi} \neg_{r}$$

$$\frac{\Gamma \vdash \Delta, \varphi}{\Gamma \vdash \Delta, \forall x \varphi} \forall_{r}$$

Maehara's multi-succedent calculus (mLJ)

• Only three restrictions on the succedent:



$$\frac{\varphi, \Gamma \vdash \psi}{\Gamma \vdash \varphi \to \psi} \to \frac{\varphi, \Gamma \vdash}{\Gamma \vdash \neg \varphi} \neg r$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall x \varphi} \forall r$$

SAT solvers

- · Solve validity problem in classical propositional logic
- Equivalently: derivability via cut (and structural rules):
 Given a set of sequents S and a sequent T,
 can T be derived from S via cut?

 Already successfully used for propositional intuitionistic logic (Intuit prover; Claessen, Rosén 2015—however no proof output)

SAT encoding

• Can directly encode $\land, \lor, \rightarrow^-, \neg^-, \forall^-, \exists^+$:

$$\varphi \land \psi \vdash \varphi \qquad \varphi \land \psi \vdash \psi \qquad \varphi, \psi \vdash \varphi \land \psi$$
$$\varphi \lor \psi \vdash \varphi \qquad \varphi \vdash \varphi \lor \psi \qquad \psi \vdash \varphi \lor \psi$$
$$\varphi, \varphi \to \psi \vdash \psi \qquad \varphi, \neg \varphi \vdash$$
$$\forall x \varphi(x) \vdash \varphi(t) \qquad \varphi(t) \vdash \exists x \varphi(x)$$

(where $\varphi \wedge \psi$,... are subformulas of the expansion proof, and $\varphi(t)$ is a quantifier instance in the expansion proof)

• Complete if no positive occurrences of \to , \forall , \neg and no negative occurrences of \exists

Backtracking for $\exists_l, \forall_r, \rightarrow_r, \neg_r$

- 1. Is $\Gamma \vdash \Delta$ derivable?
- 2. If not, we get a countermodel. This corresponds to the conclusion of a bottom-most $\exists_l/\forall_r/\rightarrow_r/\neg_r$ inference in a cut-free proof of $\Gamma \vdash \Delta$, e.g.:

$$\frac{\Gamma' \vdash \Delta', \forall x \, \varphi(x)}{\Gamma \vdash \Delta}$$

(note that $\vee_{l,r}, \wedge_{l,r}, \rightarrow_l, \neg_l$ have been exhaustively applied)

3. Go back to 1: is $\Gamma' \vdash \varphi(\alpha)$ derivable?

Introduction

Constructivization procedure

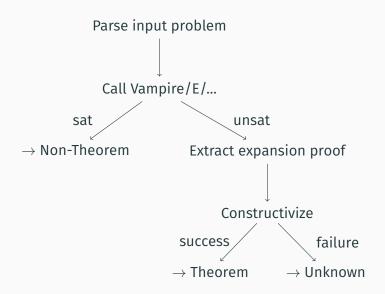
Empirical evaluation

Conclusion

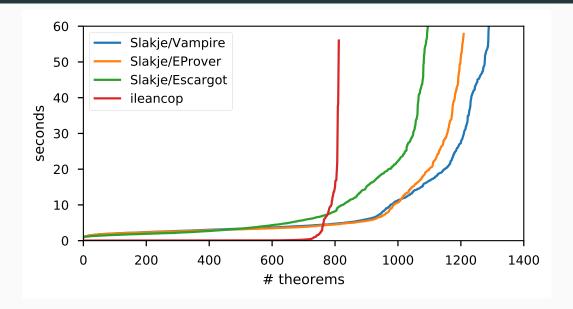
GAPT: General Architecture for Proof Theory

- · open source, written in Scala
- https://github.com/gapt/gapt
- · Centered around Herbrand's theorem and expansion proofs
- Proof transformations: LK \leftrightarrow ET \leftrightarrow Res, cut-elimination, cut-introduction, Skolemization, deskolemization, ...
- Automated reasoning: proof import for 11 provers
- Proof visualization

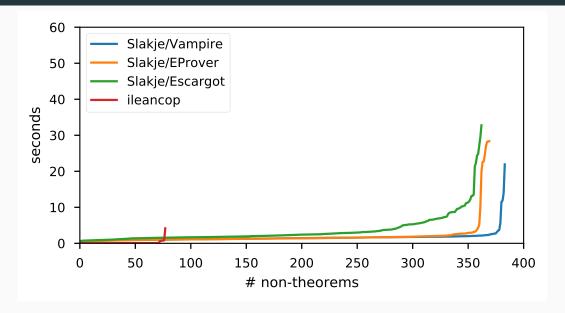
Prover architecture and implementation in Slakje (GAPT)



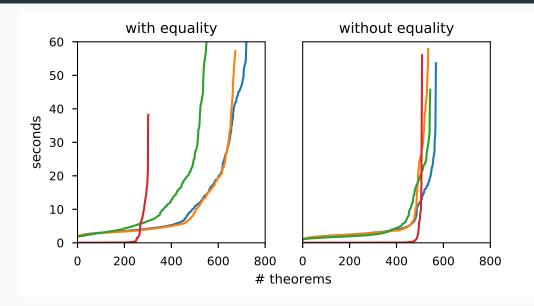
Empirical evaluation on the ILTP (theorems)



Empirical evaluation on the ILTP (non-theorems)



Empirical evaluation on the ILTP (equality)



Introduction

Constructivization procedure

Empirical evaluation

Conclusion

Conclusion

- Classical theorem proving seems to be fundamentally easier
- · Dedicated equational reasoning is crucial
- Proof constructivization is a practical approach for automated intuitionistic theorem proving
- What to do about incompleteness?

Backup slides

Glivenko classes

Definition

A set of sequents S is a Glivenko class if:

 $\forall S \in \mathcal{S}$: S intuitionistically provable \Leftrightarrow S classically provable

For example Class 1 (Orevkov 1968):

sequents without positive occurrences of \rightarrow , \neg , \forall

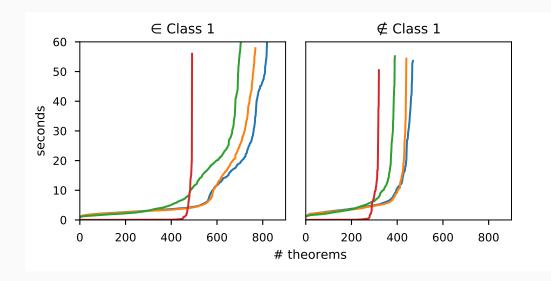
$$(\varphi \to \psi) \to \theta, \dots \vdash \dots \quad \neg \varphi \to \psi, \dots \vdash \dots \quad (\forall x \, \varphi) \to \psi, \dots \vdash \dots$$

Proof.

Every cut-free proof in LK of $S \in Class\ 1$ is a proof in mLJ.

(Slakje is complete for Class 1.)

Empirical evaluation on the ILTP (Class 1)



Empirical evaluation on the ILTP (all provers)

