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Introduction



Automated intuitionistic theorem proving

+ Many proof assistants use intuitionistic logic
- Coq, Agda, ...

- some foundations even prove —Vp (p V —p)
- e.g. homotopy type theory

 Program synthesis via Curry-Howard



Automated intuitionistic theorem provers

- Connection calculus
+ ileanCoP, ...

- Inverse method
+ imogen, ...

- Intuitionistic Logic Theorem Proving library
(ILTP; Raths, Otten, Kreitz 2006)
+ 2670 first-order problems
+ In total 1154 problems solved by existing provers
« Vampire (classical prover) solves 2420



Proof constructivization

- Transform a classical proof into an intuitionistic proof

— Use a really good classical prover,
and then constructivize its proofs



Proof constructivization

Possible on multiple levels:

+ Sequent calculus proofs

« Glivenko classes (Orevkov 1968)
- Recently for LK proofs generated by Zenon (Cauderlier 2016, Gilbert 2017)

- Lists of formulas (subsequents of the end-sequent)
+ Use classical prover to filter out assumptions
+ Often used in “hammers” for proof assistants
+ Requires another first-order prover



Proof constructivization

Possible on multiple levels:

+ Sequent calculus proofs

« Glivenko classes (Orevkov 1968)
- Recently for LK proofs generated by Zenon (Cauderlier 2016, Gilbert 2017)

- Expansion proofs (~ quantifier inferences; our approach)

- Lists of formulas (subsequents of the end-sequent)
+ Use classical prover to filter out assumptions
+ Often used in “hammers” for proof assistants
+ Requires another first-order prover



Herbrand's theorem

Theorem (special case of Herbrand 1930)
Let p(x) be a quantifier-free first-order formula.

Then 3x ¢(x) is valid in classical logic iff there exist terms t, ..., t,
such that ¢(t1) V - -- V ¢(tn) is a quasi-tautology.

Quasi-tautology = tautology modulo equality.

Expansion proofs generalize to HOL (Miller 1987)



Expansion trees/proofs

+ Natural data structure for non-prenex formulas
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- c.f. global substitution in tableaux provers,
quantifier instances in SMT solvers



Why expansion proofs?

- Abstracts away from propositional reasoning
+ and also equational reasoning!

- Deskolemization is straightforward
+ Skolemization unsound as preprocessing:
(=Vx P(x)) — 3x =P(x)
(=P(c)) — 3Ix =P(x)



Constructivization procedure



Problem statement

Given an expansion proof E of a sequent S,
find a cut-free proof in mLJ using only quantifier inferences from E

(without repeating an eigenvariable inference on any thread of the proof)

mLJ) = multi-succedent calculus for intuitionistic logic (Maehara 1954)
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Maehara’s multi-succedent calculus (mL))
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Maehara’s multi-succedent calculus (mL})

« Only three restrictions on the succedent:
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Maehara’s multi-succedent calculus (mL})

« Only three restrictions on the succedent:
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SAT solvers

- Solve validity problem in classical propositional logic
- Equivalently: derivability via cut (and structural rules):

Given a set of sequents S and a sequent T,
can T be derived from S via cut?

- Already successfully used for propositional intuitionistic logic
(Intuit prover; Claessen, Rosén 2015—however no proof output)
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SAT encoding

- Can directly encode A, vV, ——,—=—,V—, 3"
eANYEe  oANYEY gAY
eVt pbeVYy  YEeVY
o, p2vEY o,

IXe() Fo(t)  o(t) F I p(x)

(where ¢ A4, ... are subformulas of the expansion proof,
and ¢(t) is a quantifier instance in the expansion proof)

- Complete if no positive occurrences of —,V, —
and no negative occurrences of 3
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Backtracking for 3,,V,, —,, —,

1. IsT = A derivable?

2. If not, we get a countermodel. This corresponds to the conclusion of a
bottom-most 3;/V,/—,/—r inference in a cut-free proof of I - A, e.g.:
" E A VX o(X)
M= A
(note that v, A, —, — have been exhaustively applied)

3. Go back to 1: is " - p(«) derivable?
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Empirical evaluation
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GAPT: General Architecture for Proof Theory

- open source, written in Scala
- https://github.com/gapt/gapt

- Centered around Herbrand'’s theorem and expansion proofs

 Proof transformations: LK « ET < Res, cut-elimination, cut-introduction,
Skolemization, deskolemization, ...

- Automated reasoning: proof import for 11 provers

* Proof visualization
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https://github.com/gapt/gapt

Prover architecture and implementation in Slakje (GAPT)

Parse input problem
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Empirical evaluation on the ILTP (theorems)
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Empirical evaluation on the ILTP (non-theorems)
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Empirical evaluation on the ILTP (equality)
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Conclusion
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Conclusion

- Classical theorem proving seems to be
fundamentally easier

- Dedicated equational reasoning is crucial

- Proof constructivization is a practical approach
for automated intuitionistic theorem proving

- What to do about incompleteness?
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Backup slides



Glivenko classes

Definition
A set of sequents S is a Glivenko class if:
VS € S: S intuitionistically provable < S classically provable

For example Class 1 (Orevkov 1968):
sequents without positive occurrences of —, -,V

(e—=v)—0,---F... —p—t,---F... (YXp)=¢,---F...
Proof. ) ] )
Every cut-free proof in LK of S € Class 1is a proof in mL)J. O]

(Slakje is complete for Class 1.)
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Empirical evaluation on the ILTP (Class 1)
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Empirical evaluation on the ILTP (all provers)
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