Herbrand constructivization for
automated intuitionistic theorem proving

Gabriel Ebner

TABLEAUX 2019
2019-09-03

TU Wien

Introduction

Automated intuitionistic theorem proving

+ Many proof assistants use intuitionistic logic
- Coq, Agda, ...

- some foundations even prove —Vp (p V —p)
- e.g. homotopy type theory

 Program synthesis via Curry-Howard

Automated intuitionistic theorem provers

- Connection calculus
+ ileanCoP, ...

- Inverse method
+ imogen, ...

- Intuitionistic Logic Theorem Proving library
(ILTP; Raths, Otten, Kreitz 2006)
+ 2670 first-order problems
+ In total 1154 problems solved by existing provers
« Vampire (classical prover) solves 2420

Proof constructivization

- Transform a classical proof into an intuitionistic proof

— Use a really good classical prover,
and then constructivize its proofs

Proof constructivization

Possible on multiple levels:

+ Sequent calculus proofs

« Glivenko classes (Orevkov 1968)
- Recently for LK proofs generated by Zenon (Cauderlier 2016, Gilbert 2017)

- Lists of formulas (subsequents of the end-sequent)
+ Use classical prover to filter out assumptions
+ Often used in “hammers” for proof assistants
+ Requires another first-order prover

Proof constructivization

Possible on multiple levels:

+ Sequent calculus proofs

« Glivenko classes (Orevkov 1968)
- Recently for LK proofs generated by Zenon (Cauderlier 2016, Gilbert 2017)

- Expansion proofs (~ quantifier inferences; our approach)

- Lists of formulas (subsequents of the end-sequent)
+ Use classical prover to filter out assumptions
+ Often used in “hammers” for proof assistants
+ Requires another first-order prover

Herbrand's theorem

Theorem (special case of Herbrand 1930)
Let p(x) be a quantifier-free first-order formula.

Then 3x ¢(x) is valid in classical logic iff there exist terms t, ..., t,
such that ¢(t1) V - -- V ¢(tn) is a quasi-tautology.

Quasi-tautology = tautology modulo equality.

Expansion proofs generalize to HOL (Miller 1987)

Expansion trees/proofs

+ Natural data structure for non-prenex formulas

oy

a
4
Vo

N
p(fl@)) v p(f(b)) — 3x p(f(x))

- c.f. global substitution in tableaux provers,
quantifier instances in SMT solvers

Why expansion proofs?

- Abstracts away from propositional reasoning
+ and also equational reasoning!

- Deskolemization is straightforward
+ Skolemization unsound as preprocessing:
(=Vx P(x)) — 3x =P(x)
(=P(c)) — 3Ix =P(x)

Constructivization procedure

Problem statement

Given an expansion proof E of a sequent S,
find a cut-free proof in mLJ using only quantifier inferences from E

(without repeating an eigenvariable inference on any thread of the proof)

mLJ) = multi-succedent calculus for intuitionistic logic (Maehara 1954)

10

Maehara’s multi-succedent calculus (mL))

VAN o, [MEA
FNEAA

cut

M=A o, Vv o, M=A v, A

V
TEA, vy oV TEA :

L

Maehara’s multi-succedent calculus (mL})

« Only three restrictions on the succedent:

o, N=A 9
Mr=A o —
o,FA
M= A, -
N=A e
TEA VX '

r

r

12

Maehara’s multi-succedent calculus (mL})

« Only three restrictions on the succedent:

e, -9

N —v

o, M- _
M= =

M=
Trwg

12

SAT solvers

- Solve validity problem in classical propositional logic
- Equivalently: derivability via cut (and structural rules):

Given a set of sequents S and a sequent T,
can T be derived from S via cut?

- Already successfully used for propositional intuitionistic logic
(Intuit prover; Claessen, Rosén 2015—however no proof output)

13

SAT encoding

- Can directly encode A, vV, ——,—=—,V—, 3"
eANYEe oANYEY gAY
eVt pbeVYy YEeVY
o, p2vEY o,

IXe() Fo(t) o(t) F I p(x)

(where ¢ A4, ... are subformulas of the expansion proof,
and ¢(t) is a quantifier instance in the expansion proof)

- Complete if no positive occurrences of —,V, —
and no negative occurrences of 3

14

Backtracking for 3,,V,, —,, —,

1. IsT = A derivable?

2. If not, we get a countermodel. This corresponds to the conclusion of a
bottom-most 3;/V,/—,/—r inference in a cut-free proof of I - A, e.g.:
" E A VX o(X)
M= A
(note that v, A, —, — have been exhaustively applied)

3. Go back to 1: is " - p(«) derivable?

15

Empirical evaluation

16

GAPT: General Architecture for Proof Theory

- open source, written in Scala
- https://github.com/gapt/gapt

- Centered around Herbrand'’s theorem and expansion proofs

 Proof transformations: LK « ET < Res, cut-elimination, cut-introduction,
Skolemization, deskolemization, ...

- Automated reasoning: proof import for 11 provers

* Proof visualization

17

https://github.com/gapt/gapt

Prover architecture and implementation in Slakje (GAPT)

Parse input problem

|

Call vampire/E/...

sat/ \unsat

— Non-Theorem Extract expansion proof

|

Constructivize

succes/ \failu re

— Theorem — Unknown

18

Empirical evaluation on the ILTP (theorems)

seconds

60

50

40

30

20

10

— Slakje/Vampire

Slakje/EProver
—— Slakje/Escargot
—— ileancop

200 400 600

800

theorems

1000

1200

1400

19

Empirical evaluation on the ILTP (non-theorems)

60
—— Slakje/Vampire
50 - Slakje/EProver
—— Slakje/Escargot
40 4 —— ileancop
[%2]
2
o 30 A
O
]
%]
20 A
10 A
| ———
0 Wg_lﬂtl T T T T T

0 50 100 150 200 250 300 350 400
non-theorems

20

Empirical evaluation on the ILTP (equality)

with equality without equality
60

50

30

20 - /

10 A

seconds

0 1 T T
0 200 400 600 800 0 200 400 600 800
theorems

21

Conclusion

22

Conclusion

- Classical theorem proving seems to be
fundamentally easier

- Dedicated equational reasoning is crucial

- Proof constructivization is a practical approach
for automated intuitionistic theorem proving

- What to do about incompleteness?

23

Backup slides

Glivenko classes

Definition
A set of sequents S is a Glivenko class if:
VS € S: S intuitionistically provable < S classically provable

For example Class 1 (Orevkov 1968):
sequents without positive occurrences of —, -,V

(e—=v)—0,---F... —p—t,---F... (YXp)=¢,---F...
Proof.)])
Every cut-free proof in LK of S € Class 1is a proof in mL)J. O]

(Slakje is complete for Class 1.)

25

Empirical evaluation on the ILTP (Class 1)

€ Class 1 & Class 1
60

40 -~

30 -~

seconds

20 A~

0 -;74/

0 200 400 600 800 0 200 400 600 800
theorems

26

Empirical evaluation on the ILTP (all provers)

60
—— Slakje/Vampire
5o L —— Slakje/EProver
—— Slakje/Escargot
— ileancop
40 1 — jleansep*
3 —_— ft-c*
§ 30 A ft-prolog*
o — imogen*
20 - jprover*
— jleancop*
— ileantap*
10
0 —-‘_’l— 4 T T T T T
0 250 500 750 1000 1250 1500 1750 2000

theorems (* evaluated on different hardware) 27

	Introduction
	Constructivization procedure
	Empirical evaluation
	Conclusion

