Computational complexity of grammars for proofs with induction

Gabriel Ebner

First International Workshop on Proof Theory for Automated Deduction, Automated Deduction for Proof Theory

2019-10-24

Technische Universität Wien / Vrije Universiteit Amsterdam

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

Theorem (special case of Herbrand 1930)

Let $\varphi(x)$ be a quantifier-free first-order formula. Then $\exists x \varphi(x)$ is valid iff there exist terms t_1, \ldots, t_n such that $\varphi(t_1) \lor \cdots \lor \varphi(t_n)$ is a tautology.

Grammar-based proof analysis (Hetzl 2012)

Grammar-based proof analysis (Hetzl 2012)

• Assign (tree) grammar $G(\pi)$ to proof π such that the language $L(G(\pi))$ is a Herbrand sequent

Grammar-based proof analysis (Hetzl 2012)

• Assign (tree) grammar $G(\pi)$ to proof π such that the language $L(G(\pi))$ is a Herbrand sequent

- Invert cut-elimination: given a cut-free proof π , find a proof π' with cuts.
 - 1. Find grammar G such that $L(G) \supseteq H(\pi)$
 - 2. Compute cut-formulas
 - \rightarrow Lemma generation
 - ightarrow Invariants for inductive proofs
- Working with grammars reduces bureaucracy:
 - e.g. prove uncompressibility result for grammars, then lift to proofs (Eberhard, Hetzl 2018)

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

Vectorial totally rigid acyclic tree grammars.

Grammars for proofs with purely universally quantified cuts.

- Start symbol: A
- Nonterminal vectors: $A, \overline{B}, \overline{C}, \overline{D}, \dots$ where $\overline{B} = (B_1, \dots, B_n)$, etc.
- (Acyclic) productions: $\overline{B} \to \overline{t}[\overline{C}, \overline{D}, \dots]$

Rigid derivations: $A[A \setminus t_1][\overline{B} \setminus \overline{t_2}][\overline{C} \setminus \overline{t_3}] \cdots$

(Finite!) language *L*(*G*) consists of all derivable terms

$$A
ightarrow f(B_1, B_1, B_2) \mid g(B_1, B_1, B_2)$$

 $\overline{B}
ightarrow (c, e) \mid (d, f)$

$$A
ightarrow f(B_1, B_1, B_2) \mid g(B_1, B_1, B_2)$$

 $\overline{B}
ightarrow (c, e) \mid (d, f)$

 $L(G) = \{f(c, c, e), f(d, d, f), g(c, c, e), g(d, d, f)\}$

 $L(G(\pi))$ contains the formulas in a Herbrand sequent of π $G(\pi)$ consists of:

- Nonterminals: eigenvariables from cuts + start symbol ${\rm A}$
- Productions $\alpha \rightarrow t$ for weak quantifier inferences on cut formulas:

end-sequent.

Simple induction proofs (Eberhard, Hetzl 2015)

$$\begin{array}{cccc}
(\pi_1) & (\pi_2) \\
\hline \Gamma \vdash \forall x \, \psi(\mathbf{0}, \overline{x}) & \Gamma, \forall x \, \psi(\mathbf{s}(\nu), \overline{x}) \vdash \forall \overline{x} \, \psi(\nu, \overline{x}) \\
\hline \Gamma \vdash \forall \overline{x} \, \psi(\alpha, \overline{x}) & \Gamma, \forall \overline{x} \, \psi(\alpha, \overline{x}) \vdash \varphi(\alpha) \\
\hline \Gamma \vdash \varphi(\alpha) & \Gamma \vdash \varphi(\alpha)
\end{array}$$
(\$\mathcal{T}\$)

where π_1, π_2, π_3 are cut-free and ψ, φ are quantifier-free

→ study induced Herbrand sequents of $\Gamma \vdash \varphi(n)$ for numerals *n*.

Grammar assignment to simple induction proofs (Eberhard, Hetzl 2015)

Induction grammars

- Two kinds of (cyclic!) productions:
 - $\tau \to t[\overline{\gamma}, \alpha, \nu]$
 - $\overline{\gamma} \to t[\overline{\gamma}, \alpha, \nu]$
- Instantiation: for each numeral n, set L(G, n) = L(I(G, n)) for VTRATG I(G, n):
 - Nonterminals $\tau, \overline{\gamma_0}, \ldots, \overline{\gamma_n}$.
 - $\bullet \ \tau \to t[\alpha,\nu,\overline{\gamma}] \quad \rightsquigarrow \quad \tau \to t[n,k,\overline{\gamma_{\mathsf{s}(k)}}] \quad \text{ for } \mathsf{s}(k) < n$
 - $\bullet \ \overline{\gamma} \to \overline{t}[\alpha] \quad \rightsquigarrow \quad \overline{\gamma_k} \to \overline{t}[n] \quad \text{ for } k < n$
 - $\bullet \ \overline{\gamma} \to \overline{t}[\alpha,\nu,\overline{\gamma}] \quad \rightsquigarrow \quad \overline{\gamma_k} \to \overline{t}[n,k,\overline{\gamma_{s(k)}}] \quad \text{ for } s(k) < n$
 - (corresponds to unrolling of induction inference)

 $au
ightarrow r(\gamma_1, \gamma_1)$ $\overline{\gamma}
ightarrow (f(\gamma_2), g(\gamma_1)) \mid (c, d)$

Instantiates to I(G, 2):

$$\begin{aligned} \tau &\to r(\gamma_{0,1},\gamma_{0,1}) \mid r(\gamma_{1,1},\gamma_{1,1}) \mid r(\gamma_{2,1},\gamma_{2,1}) \\ (\gamma_{0,1},\gamma_{0,2}) &\to (f(\gamma_{1,2}),g(\gamma_{1,1})) \mid (c,d) \\ (\gamma_{1,1},\gamma_{1,2}) &\to (f(\gamma_{2,2}),g(\gamma_{2,1})) \mid (c,d) \\ (\gamma_{2,1},\gamma_{2,2}) &\to (c,d) \end{aligned}$$

And $L(G, 2) = \{r(f(g(c)), f(g(c))), r(f(d), f(d)), r(c, c)\}$

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

Problem (TRATG-Cover)

Input: set of terms *T* and a number *k*.

Output: is there a TRATG G with at most k productions such that $L(G) \supseteq T$?

Surprisingly hard. We only know that it is in NP.

VTRATG-MEMBERSHIP: VTRATG-EMPTINESS: VTRATG-CONTAINMENT: VTRATG-DISJOINTNESS: VTRATG-EQUIVALENCE: $t \in L(G)$ $L(G) = \emptyset$ $L(G_1) \subseteq L(G_2)$ $L(G_1) \cap L(G_2) = \emptyset$ $L(G_1) = L(G_2)$

NP-complete coNP-complete Π_2^P -complete coNP-complete Π_2^P -complete IND-MEMBERSHIP: IND-EMPTINESS: IND-CONTAINMENT: IND-DISJOINTNESS: IND-EQUIVALENCE: $t \in L(G, n)$ $\forall n L(G, n) = \emptyset$ $\forall n L(G_1, n) \subseteq L(G_2, n)$ $\forall n L(G_1, n) \cap L(G_2, n) = \emptyset$ $\forall n L(G_1, n) = L(G_2, n)$ NP-complete PSPACE-complete undecidable undecidable undecidable

Problem (PCP)

Input: two finite lists of words w_1, \ldots, w_n and v_1, \ldots, v_n

Output: is there a sequence of indices i_1, \ldots, i_k with k > 0 such that $w_{i_1} \ldots w_{i_k} = v_{i_1} \ldots v_{i_k}$?

Undecidable (Post 1946).

Disjointness

Theorem IND-DISJOINTNESS is undecidable.

Proof. Reduce PCP to IND-DISJOINTNESS.

Construct two induction grammars Image_P and $\operatorname{Equal}_{\Sigma,l}$:

- Image_P generates all pairs $(w_{i_1} \cdots w_{i_l}, v_{i_1} \cdots v_{i_l})$
- Equal_{Σ , *l*} generates all pairs (*w*, *w*)

A word $a_1a_2...a_n$ is encoded as a unary term $a_1(a_2(...a_n(\epsilon)))$. Then the PCP instance has *no* solution iff:

$$\forall i \quad L(\operatorname{Image}_{P}, i) \cap L(\operatorname{Equal}_{\Sigma, l}, i) = \emptyset$$

Let
$$w = a_1 a_2 \dots a_k$$
, then $w \cdot \gamma = a_1(a_2(\dots a_k(\gamma)))$.

Definition

The induction grammar $\mathrm{Equal}_{\Sigma,l}$ has the following productions:

$$au
ightarrow \mathbf{r}(\gamma, \gamma)$$

 $\gamma
ightarrow \mathbf{w} \cdot \gamma \mid \mathbf{w} \quad \text{where } |\mathbf{w}| \leq l$

Lemma

$$L(\operatorname{Equal}_{\Sigma,l}, k) = \{r(w, w) \mid w \in \Sigma^*, |w| \le l(k+1)\}$$

Definition

The induction grammar $Image_P$ has the following productions:

$$\tau \to \mathbf{r}(\gamma_1, \gamma_2)$$

$$(\gamma_1, \gamma_2) \to (\mathbf{w}_1 \cdot \gamma_1, \mathbf{v}_1 \cdot \gamma_2) | \cdots | (\mathbf{w}_n \cdot \gamma_1, \mathbf{v}_n \cdot \gamma_2)$$

$$(\gamma_1, \gamma_2) \to (\mathbf{w}_1, \mathbf{v}_1) | \cdots | (\mathbf{w}_n, \mathbf{v}_n)$$

Lemma

$$L(\text{Image}_{P}, k) = \{r(w_{i_{1}} \cdots w_{i_{l}}, v_{i_{1}} \cdots v_{i_{l}}) \mid 1 \leq l \leq k+1\}$$

Theorem IND-CONTAINMENT is undecidable.

Proof. Similar to IND-DISJOINTNESS.

Construct two induction grammars Image_P and $\operatorname{Diff}_{\Sigma,l}$:

- Image_P as before
- $\operatorname{Diff}_{\Sigma,l}$ generates all pairs of different words

Then the PCP instance has no solution iff:

 $\forall i \quad L(\text{Image}_{P}, i) \subseteq L(\text{Diff}_{\Sigma, l}, i)$

Definition

The induction grammar $\operatorname{Diff}_{\Sigma,l}$ has the following productions:

$$\begin{split} &\tau \to r(\gamma_1, \gamma_2) \\ &\overline{\gamma} \to \left(t \cdot \gamma_1, u \cdot \gamma_2, v \cdot \gamma_3, w \cdot \gamma_4\right) \quad \text{where } |t| = |u| \leq l \wedge \max(|v|, |w|) \leq l \\ &\overline{\gamma} \to \left(t \cdot \gamma_3, u \cdot \gamma_4, v \cdot \gamma_3, w \cdot \gamma_4\right) \quad \text{where } |t| = |u| \leq l \wedge \max(|v|, |w|) \leq l \wedge t \neq u \\ &\overline{\gamma} \to \left(t, u, v, w\right) \quad \text{where } \max(|t|, |u|, |v|, |w|) \leq l \wedge t \neq u \end{split}$$

where $t, u, v, w \in \Sigma^*$ and $\overline{\gamma} = (\gamma_1, \gamma_2, \gamma_3, \gamma_4)$

Lemma

 $L(\mathrm{Diff}_{\Sigma,l},k) = \{r(v,w) \mid v \neq w \in \Sigma^* \land \max(|v|,|w|) \le l(k+1)\}$

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

Hardness results on VTRATGs require complicated grammars. Typical grammars (such as I(G, n)) are much simpler.

Dependency graphs of VTRATGs

Hardness results on VTRATGs require complicated grammars. Typical grammars (such as I(G, n)) are much simpler.

This VTRATG G is almost "linear": $A \rightarrow f(B) \quad B \rightarrow f(C) \quad C \rightarrow g(D) \quad D \rightarrow c$

Dependency graphs of VTRATGs

Hardness results on VTRATGs require complicated grammars. Typical grammars (such as I(G, n)) are much simpler.

This VTRATG G is almost "linear": $A \rightarrow f(B) \quad B \rightarrow f(C) \quad C \rightarrow g(D) \quad D \rightarrow c$

Assign dependency graph D(G): A - B - C - D Hardness results on VTRATGs require complicated grammars. Typical grammars (such as I(G, n)) are much simpler.

This VTRATG G is almost "linear": $A \rightarrow f(B) \quad B \rightarrow f(C) \quad C \rightarrow g(D) \quad D \rightarrow c$

Assign dependency graph D(G): A - B - C - D

The treewidth tw(D(G)) measures how close it is to a tree:

 Let G be a connected graph with at least two vertices, then tw(G) = 1 iff G is a tree Hardness results on VTRATGs require complicated grammars. Typical grammars (such as I(G, n)) are much simpler.

This VTRATG G is almost "linear": $A \rightarrow f(B) \quad B \rightarrow f(C) \quad C \rightarrow g(D) \quad D \rightarrow c$

Assign dependency graph D(G): A - B - C - D

The treewidth tw(D(G)) measures how close it is to a tree:

 Let G be a connected graph with at least two vertices, then tw(G) = 1 iff G is a tree

We have $tw(D(I(G, n))) \leq 2|\overline{\gamma}|!$

 $\begin{array}{lll} (\mathsf{tw} \leq k)\text{-}\mathsf{MEMBERSHIP:} & t \in L(G) & \mathsf{P} \\ (\mathsf{tw} \leq k)\text{-}\mathsf{EMPTINESS:} & L(G) = \emptyset & \mathsf{P} \\ (\mathsf{tw} \leq k)\text{-}\mathsf{CONTAINMENT:} & L(G_1) \subseteq L(G_2) & \mathsf{coNP-complete} \\ (\mathsf{tw} \leq k)\text{-}\mathsf{DISJOINTNESS:} & L(G_1) \cap L(G_2) = \emptyset & \mathsf{coNP-complete} \\ (\mathsf{tw} \leq k)\text{-}\mathsf{EQUIVALENCE:} & L(G_1) = L(G_2) & \mathsf{coNP-complete} \end{array}$

These complexity results apply to I(G, n) since we have $tw(D(I(G, n))) \le 2|\overline{\gamma}|$.

 $(|\overline{\gamma}| \leq k)$ -IND-MEMBERSHIP: $(|\overline{\gamma}| \leq k)$ -IND-EMPTINESS: $(|\overline{\gamma}| \leq k)$ -IND-CONTAINMENT: $(|\overline{\gamma}| \leq k)$ -IND-DISJOINTNESS: $(|\overline{\gamma}| \leq k)$ -IND-EQUIVALENCE:

$$\begin{split} t \in L(G) & \mathsf{P} \\ \forall n \ L(G,n) = \emptyset & \mathsf{P} \\ \forall n \ L(G_1,n) \subseteq L(G_2,n) & \text{undec.} \\ \forall n \ L(G_1,n) \cap L(G_2,n) = \emptyset & \text{undec.} \\ \forall n \ L(G_1,n) = L(G_2,n) & \text{undec.} \end{split}$$

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

- Complexity results also transfer to proofs.
- Want to find simple induction proofs $\pi(G)$ such that e.g.:

 $L(G(\pi(G_1)), n) \subseteq L(G(\pi(G_2)), n) \leftrightarrow H(\pi(G_1)_n^*) \subseteq H(\pi(G_2)_n^*)$

- Main technical challenge: weakening inferences.
 - in general $L(G(\pi), n) \supset H(\pi_n^*)!$

Theorem (Hetzl, Straßburger 2012)

- For every Gentzen cut-reduction sequence $\pi \rightsquigarrow \pi'$, we have $L(G(\pi)) \supseteq L(G(\pi'))$.
- If we did not perform grade reduction on weakenings, then L(G(π)) = L(G(π')).

Let $\stackrel{ne}{\leadsto}$ be the *non-erasing* Gentzen cut-reduction relation, i.e. where we do not reduce weakenings.

We can still define $H(\cdot)$ on $\stackrel{ne}{\leadsto}$ -NFs.

Problem (SIP-CONTAINMENT).

Input: simple induction proofs π, π' .

Let $\pi_n^*, \pi_n'^*$ be $\stackrel{ne}{\leadsto}$ -NFs such that $\pi_n \stackrel{ne}{\leadsto} \pi_n^*$ and $\pi_n' \stackrel{ne}{\leadsto} \pi_n'^*$. Output: is $H(\pi_n^*) \subseteq H(\pi_n'^*)$ for all n?

Theorem SIP-CONTAINMENT is undecidable. Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

- Decision problems on induction grammars are generally infeasible.
 - Even restricting the size of the vectors.
- **Open problem**: how complex is IND-COVER? (or TRATG-COVER, resp.?)

Given a finite family of sets of terms $(L_n)_{n \in I}$ and $K \ge 0$, is there an induction grammar *G* with at most *K* productions such that $L(G, n) \supseteq L_n$ for all *n*?