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Herbrand’s theorem

Theorem (special case of Herbrand 1930)
Let φ(x) be a quantifier-free first-order formula.

Then ∃x φ(x) is valid iff there exist terms t1, . . . , tn
such that φ(t1) ∨ · · · ∨ φ(tn) is a tautology.
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Grammar-based proof analysis (Hetzl 2012)

π π∗

H(π∗)

cut-free proof

set of terms ≡ Herbrand sequent

• Assign (tree) grammar G(π) to proof π
such that the language L(G(π)) is a Herbrand sequent
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Applications

• Invert cut-elimination: given a cut-free proof π, find a
proof π′ with cuts.
1. Find grammar G such that L(G) ⊇ H(π)
2. Compute cut-formulas

→ Lemma generation
→ Invariants for inductive proofs

• Working with grammars reduces bureaucracy:
• e.g. prove uncompressibility result for grammars,
then lift to proofs (Eberhard, Hetzl 2018)
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VTRATGs

Vectorial totally rigid acyclic tree grammars.

Grammars for proofs with purely universally quantified cuts.

• Start symbol: A
• Nonterminal vectors: A,B, C,D, . . .
where B = (B1, . . . ,Bn), etc.

• (Acyclic) productions: B→ t[C,D, . . . ]

Rigid derivations: A[A\t1][B\t2][C\t3] · · ·

(Finite!) language L(G) consists of all derivable terms
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VTRATG example

A→ f(B1,B1,B2) | g(B1,B1,B2)
B→ (c, e) | (d, f)

L(G) = {f(c, c, e), f(d,d, f),g(c, c, e),g(d,d, f)}
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Cut-reduction to language generation

L(G(π)) contains the formulas in a Herbrand sequent of π

G(π) consists of:

• Nonterminals: eigenvariables from cuts + start symbol A
• Productions α→ t for weak quantifier inferences on cut
formulas:

⊢ φ(α)
∀r⊢ ∀x φ(x)

φ(t) ⊢
∀l...

∀x φ(x) ⊢
cut

• Productions A → φ(t) for instances of formulas
end-sequent.
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Simple induction proofs (Eberhard, Hetzl 2015)

(π1)

Γ ⊢ ∀x ψ(0, x)
(π2)

Γ, ∀x ψ(s(ν), x) ⊢ ∀x ψ(ν, x)
ind

Γ ⊢ ∀x ψ(α, x)
(π3)

Γ, ∀x ψ(α, x) ⊢ φ(α)
Γ ⊢ φ(α)

where π1, π2, π3 are cut-free
and ψ,φ are quantifier-free

→ study induced Herbrand sequents of Γ ⊢ φ(n) for
numerals n.
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Grammar assignment to simple induction proofs
(Eberhard, Hetzl 2015)

π πn π∗n

G(π) I(G(π),n) H(π∗n)L(G(π),n)

induction-elim. cut-elim.

instantiates gen.
⊇

for each numeral n

ind. grammar VTRATG H-sequent
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Induction grammars

• Two kinds of (cyclic!) productions:
• τ → t[γ, α, ν]
• γ → t[γ, α, ν]

• Instantiation: for each numeral n, set L(G,n) = L(I(G,n))
for VTRATG I(G,n):
• Nonterminals τ, γ0, . . . , γn.

• τ → t[α, ν, γ] ⇝ τ → t[n, k, γs(k)] for s(k) < n

• γ → t[α] ⇝ γk → t[n] for k < n

• γ → t[α, ν, γ] ⇝ γk → t[n, k, γs(k)] for s(k) < n

• (corresponds to unrolling of induction inference)
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Induction grammar example

τ → r(γ1, γ1) γ → (f(γ2),g(γ1)) | (c,d)

Instantiates to I(G, 2):

τ → r(γ0,1, γ0,1) | r(γ1,1, γ1,1) | r(γ2,1, γ2,1)
(γ0,1, γ0,2) → (f(γ1,2),g(γ1,1)) | (c,d)
(γ1,1, γ1,2) → (f(γ2,2),g(γ2,1)) | (c,d)
(γ2,1, γ2,2) → (c,d)

And L(G, 2) = {r(f(g(c)), f(g(c))), r(f(d), f(d)), r(c, c)}
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Minimal cover

Problem (TRATG-Cover)

Input: set of terms T and a number k.

Output: is there a TRATG G with at most k productions such
that L(G) ⊇ T?

Surprisingly hard. We only know that it is in NP.
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Decision problems on VTRATGs (Eberhard, E, Hetzl 2018)

VTRATG-Membership: t ∈ L(G) NP-complete
VTRATG-Emptiness: L(G) = ∅ coNP-complete
VTRATG-Containment: L(G1) ⊆ L(G2) ΠP2-complete
VTRATG-Disjointness: L(G1) ∩ L(G2) = ∅ coNP-complete
VTRATG-Equivalence: L(G1) = L(G2) ΠP2-complete
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Decision problems on induction grammars

Ind-Membership: t ∈ L(G,n) NP-complete
Ind-Emptiness: ∀n L(G,n) = ∅ PSPACE-complete
Ind-Containment: ∀n L(G1,n) ⊆ L(G2,n) undecidable
Ind-Disjointness: ∀n L(G1,n) ∩ L(G2,n) = ∅ undecidable
Ind-Equivalence: ∀n L(G1,n) = L(G2,n) undecidable
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Post Correspondence Problem

Problem (PCP)

Input: two finite lists of words w1, . . . ,wn and v1, . . . , vn
Output: is there a sequence of indices i1, . . . , ik with k > 0
such that wi1 . . .wik = vi1 . . . vik?

Undecidable (Post 1946).
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Disjointness

Theorem
Ind-Disjointness is undecidable.

Proof.
Reduce PCP to Ind-Disjointness.

Construct two induction grammars ImageP and EqualΣ,l:

• ImageP generates all pairs (wi1 · · ·wil , vi1 · · · vil)
• EqualΣ,l generates all pairs (w,w)

A word a1a2 . . .an is encoded as a unary term a1(a2(. . .an(ϵ))).

Then the PCP instance has no solution iff:

∀i L(ImageP, i) ∩ L(EqualΣ,l, i) = ∅
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Disjointness of induction grammars

Let w = a1a2 . . .ak, then w · γ = a1(a2(. . .ak(γ))).

Definition

The induction grammar EqualΣ,l has the following
productions:

τ → r(γ, γ)
γ → w · γ | w where |w| ≤ l

Lemma

L(EqualΣ,l, k) = {r(w,w) | w ∈ Σ∗, |w| ≤ l(k+ 1)}
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Disjointness of induction grammars

Definition

The induction grammar ImageP has the following productions:

τ → r(γ1, γ2)
(γ1, γ2) → (w1 · γ1, v1 · γ2) | · · · | (wn · γ1, vn · γ2)
(γ1, γ2) → (w1, v1) | · · · | (wn, vn)

Lemma

L(ImageP, k) = {r(wi1 · · ·wil , vi1 · · · vil) | 1 ≤ l ≤ k+ 1}
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Containment of induction grammars

Theorem
Ind-Containment is undecidable.

Proof.
Similar to Ind-Disjointness.

Construct two induction grammars ImageP and DiffΣ,l:

• ImageP as before
• DiffΣ,l generates all pairs of different words

Then the PCP instance has no solution iff:

∀i L(ImageP, i) ⊆ L(DiffΣ,l, i)
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Containment of induction grammars

Definition

The induction grammar DiffΣ,l has the following productions:

τ → r(γ1, γ2)
γ → (t · γ1,u · γ2, v · γ3,w · γ4) where |t| = |u| ≤ l ∧max(|v|, |w|) ≤ l

γ → (t · γ3,u · γ4, v · γ3,w · γ4) where |t| = |u| ≤ l ∧max(|v|, |w|) ≤ l ∧ t ̸= u

γ → (t,u, v,w) where max(|t|, |u|, |v|, |w|) ≤ l ∧ t ̸= u

where t,u, v,w ∈ Σ∗ and γ = (γ1, γ2, γ3, γ4)

Lemma

L(DiffΣ,l, k) = {r(v,w) | v ̸= w ∈ Σ∗ ∧max(|v|, |w|) ≤ l(k+ 1)}
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Dependency graphs of VTRATGs

Hardness results on VTRATGs require complicated grammars.
Typical grammars (such as I(G,n)) are much simpler.

This VTRATG G is almost “linear”:
A→ f(B) B→ f(C) C→ g(D) D→ c

Assign dependency graph D(G):
A− B− C− D

The treewidth tw(D(G)) measures how close it is to a tree:

• Let G be a connected graph with at least two vertices,
then tw(G) = 1 iff G is a tree

We have tw(D(I(G,n))) ≤ 2|γ|!
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Treewidth-bounded dependency graphs

(tw ≤ k)-Membership: t ∈ L(G) P
(tw ≤ k)-Emptiness: L(G) = ∅ P
(tw ≤ k)-Containment: L(G1) ⊆ L(G2) coNP-complete
(tw ≤ k)-Disjointness: L(G1) ∩ L(G2) = ∅ coNP-complete
(tw ≤ k)-Equivalence: L(G1) = L(G2) coNP-complete

These complexity results apply to I(G,n) since we have
tw(D(I(G,n))) ≤ 2|γ|.
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Induction grammars with bounded |γ|

(|γ| ≤ k)-Ind-Membership: t ∈ L(G) P
(|γ| ≤ k)-Ind-Emptiness: ∀n L(G,n) = ∅ P
(|γ| ≤ k)-Ind-Containment: ∀n L(G1,n) ⊆ L(G2,n) undec.
(|γ| ≤ k)-Ind-Disjointness: ∀n L(G1,n) ∩ L(G2,n) = ∅ undec.
(|γ| ≤ k)-Ind-Equivalence: ∀n L(G1,n) = L(G2,n) undec.
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Problems on proofs

• Complexity results also transfer to proofs.

• Want to find simple induction proofs π(G) such that e.g.:

L(G(π(G1)),n) ⊆ L(G(π(G2)),n) ↔ H(π(G1)∗n) ⊆ H(π(G2)∗n)

• Main technical challenge: weakening inferences.
• in general L(G(π),n) ⊃ H(π∗

n)!
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Non-erasing cut-reduction

Theorem (Hetzl, Straßburger 2012)
• For every Gentzen cut-reduction sequence π ⇝ π′, we
have L(G(π)) ⊇ L(G(π′)).

• If we did not perform grade reduction on weakenings,
then L(G(π)) = L(G(π′)).

Let ne⇝ be the non-erasing Gentzen cut-reduction relation, i.e.
where we do not reduce weakenings.

We can still define H(·) on ne⇝-NFs.
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Decision problems on proofs

Problem (SIP-Containment).

Input: simple induction proofs π, π′.

Let π∗n, π′∗n be
ne⇝-NFs such that πn ne⇝ π∗n and π′n

ne⇝ π′∗n .

Output: is H(π∗n) ⊆ H(π′∗n ) for all n?

Theorem
SIP-Containment is undecidable.
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Conclusion

• Decision problems on induction grammars are generally
infeasible.
• Even restricting the size of the vectors.

• Open problem: how complex is Ind-Cover?
(or TRATG-Cover, resp.?)

Given a finite family of sets of terms (Ln)n∈I and K ≥ 0, is
there an induction grammar G with at most K productions
such that L(G,n) ⊇ Ln for all n?
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