
Computational complexity of
grammars for proofs with induction

Gabriel Ebner

First International Workshop on
Proof Theory for Automated Deduction,
Automated Deduction for Proof Theory

2019-10-24

Technische Universität Wien / Vrije Universiteit Amsterdam

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

1

Herbrand’s theorem

Theorem (special case of Herbrand 1930)
Let φ(x) be a quantifier-free first-order formula.

Then ∃x φ(x) is valid iff there exist terms t1, . . . , tn
such that φ(t1) ∨ · · · ∨ φ(tn) is a tautology.

2

Grammar-based proof analysis (Hetzl 2012)

π π∗

H(π∗)

cut-free proof

set of terms ≡ Herbrand sequent

• Assign (tree) grammar G(π) to proof π
such that the language L(G(π)) is a Herbrand sequent

3

Grammar-based proof analysis (Hetzl 2012)

π π∗

H(π∗)G(π)

cut-free proof

set of terms ≡ Herbrand sequentgrammar

• Assign (tree) grammar G(π) to proof π
such that the language L(G(π)) is a Herbrand sequent

3

Grammar-based proof analysis (Hetzl 2012)

π π∗

H(π∗)G(π) L(G(π)) ⊇

cut-free proof

set of terms ≡ Herbrand sequentgrammar

• Assign (tree) grammar G(π) to proof π
such that the language L(G(π)) is a Herbrand sequent

3

Applications

• Invert cut-elimination: given a cut-free proof π, find a
proof π′ with cuts.
1. Find grammar G such that L(G) ⊇ H(π)
2. Compute cut-formulas

→ Lemma generation
→ Invariants for inductive proofs

• Working with grammars reduces bureaucracy:
• e.g. prove uncompressibility result for grammars,
then lift to proofs (Eberhard, Hetzl 2018)

4

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

5

VTRATGs

Vectorial totally rigid acyclic tree grammars.

Grammars for proofs with purely universally quantified cuts.

• Start symbol: A
• Nonterminal vectors: A,B, C,D, . . .
where B = (B1, . . . ,Bn), etc.

• (Acyclic) productions: B→ t[C,D, . . .]

Rigid derivations: A[A\t1][B\t2][C\t3] · · ·

(Finite!) language L(G) consists of all derivable terms

6

VTRATG example

A→ f(B1,B1,B2) | g(B1,B1,B2)
B→ (c, e) | (d, f)

L(G) = {f(c, c, e), f(d,d, f),g(c, c, e),g(d,d, f)}

7

VTRATG example

A→ f(B1,B1,B2) | g(B1,B1,B2)
B→ (c, e) | (d, f)

L(G) = {f(c, c, e), f(d,d, f),g(c, c, e),g(d,d, f)}

7

Cut-reduction to language generation

L(G(π)) contains the formulas in a Herbrand sequent of π

G(π) consists of:

• Nonterminals: eigenvariables from cuts + start symbol A
• Productions α→ t for weak quantifier inferences on cut
formulas:

⊢ φ(α)
∀r⊢ ∀x φ(x)

φ(t) ⊢
∀l...

∀x φ(x) ⊢
cut

• Productions A → φ(t) for instances of formulas
end-sequent.

8

Simple induction proofs (Eberhard, Hetzl 2015)

(π1)

Γ ⊢ ∀x ψ(0, x)
(π2)

Γ, ∀x ψ(s(ν), x) ⊢ ∀x ψ(ν, x)
ind

Γ ⊢ ∀x ψ(α, x)
(π3)

Γ, ∀x ψ(α, x) ⊢ φ(α)
Γ ⊢ φ(α)

where π1, π2, π3 are cut-free
and ψ,φ are quantifier-free

→ study induced Herbrand sequents of Γ ⊢ φ(n) for
numerals n.

9

Grammar assignment to simple induction proofs
(Eberhard, Hetzl 2015)

π πn π∗n

G(π) I(G(π),n) H(π∗n)L(G(π),n)

induction-elim. cut-elim.

instantiates gen.
⊇

for each numeral n

ind. grammar VTRATG H-sequent

10

Induction grammars

• Two kinds of (cyclic!) productions:
• τ → t[γ, α, ν]
• γ → t[γ, α, ν]

• Instantiation: for each numeral n, set L(G,n) = L(I(G,n))
for VTRATG I(G,n):
• Nonterminals τ, γ0, . . . , γn.

• τ → t[α, ν, γ] ⇝ τ → t[n, k, γs(k)] for s(k) < n

• γ → t[α] ⇝ γk → t[n] for k < n

• γ → t[α, ν, γ] ⇝ γk → t[n, k, γs(k)] for s(k) < n

• (corresponds to unrolling of induction inference)

11

Induction grammar example

τ → r(γ1, γ1) γ → (f(γ2),g(γ1)) | (c,d)

Instantiates to I(G, 2):

τ → r(γ0,1, γ0,1) | r(γ1,1, γ1,1) | r(γ2,1, γ2,1)
(γ0,1, γ0,2) → (f(γ1,2),g(γ1,1)) | (c,d)
(γ1,1, γ1,2) → (f(γ2,2),g(γ2,1)) | (c,d)
(γ2,1, γ2,2) → (c,d)

And L(G, 2) = {r(f(g(c)), f(g(c))), r(f(d), f(d)), r(c, c)}

12

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

13

Minimal cover

Problem (TRATG-Cover)

Input: set of terms T and a number k.

Output: is there a TRATG G with at most k productions such
that L(G) ⊇ T?

Surprisingly hard. We only know that it is in NP.

14

Decision problems on VTRATGs (Eberhard, E, Hetzl 2018)

VTRATG-Membership: t ∈ L(G) NP-complete
VTRATG-Emptiness: L(G) = ∅ coNP-complete
VTRATG-Containment: L(G1) ⊆ L(G2) ΠP2-complete
VTRATG-Disjointness: L(G1) ∩ L(G2) = ∅ coNP-complete
VTRATG-Equivalence: L(G1) = L(G2) ΠP2-complete

15

Decision problems on induction grammars

Ind-Membership: t ∈ L(G,n) NP-complete
Ind-Emptiness: ∀n L(G,n) = ∅ PSPACE-complete
Ind-Containment: ∀n L(G1,n) ⊆ L(G2,n) undecidable
Ind-Disjointness: ∀n L(G1,n) ∩ L(G2,n) = ∅ undecidable
Ind-Equivalence: ∀n L(G1,n) = L(G2,n) undecidable

16

Post Correspondence Problem

Problem (PCP)

Input: two finite lists of words w1, . . . ,wn and v1, . . . , vn
Output: is there a sequence of indices i1, . . . , ik with k > 0
such that wi1 . . .wik = vi1 . . . vik?

Undecidable (Post 1946).

17

Disjointness

Theorem
Ind-Disjointness is undecidable.

Proof.
Reduce PCP to Ind-Disjointness.

Construct two induction grammars ImageP and EqualΣ,l:

• ImageP generates all pairs (wi1 · · ·wil , vi1 · · · vil)
• EqualΣ,l generates all pairs (w,w)

A word a1a2 . . .an is encoded as a unary term a1(a2(. . .an(ϵ))).

Then the PCP instance has no solution iff:

∀i L(ImageP, i) ∩ L(EqualΣ,l, i) = ∅

18

Disjointness of induction grammars

Let w = a1a2 . . .ak, then w · γ = a1(a2(. . .ak(γ))).

Definition

The induction grammar EqualΣ,l has the following
productions:

τ → r(γ, γ)
γ → w · γ | w where |w| ≤ l

Lemma

L(EqualΣ,l, k) = {r(w,w) | w ∈ Σ∗, |w| ≤ l(k+ 1)}

19

Disjointness of induction grammars

Definition

The induction grammar ImageP has the following productions:

τ → r(γ1, γ2)
(γ1, γ2) → (w1 · γ1, v1 · γ2) | · · · | (wn · γ1, vn · γ2)
(γ1, γ2) → (w1, v1) | · · · | (wn, vn)

Lemma

L(ImageP, k) = {r(wi1 · · ·wil , vi1 · · · vil) | 1 ≤ l ≤ k+ 1}

20

Containment of induction grammars

Theorem
Ind-Containment is undecidable.

Proof.
Similar to Ind-Disjointness.

Construct two induction grammars ImageP and DiffΣ,l:

• ImageP as before
• DiffΣ,l generates all pairs of different words

Then the PCP instance has no solution iff:

∀i L(ImageP, i) ⊆ L(DiffΣ,l, i)

21

Containment of induction grammars

Definition

The induction grammar DiffΣ,l has the following productions:

τ → r(γ1, γ2)
γ → (t · γ1,u · γ2, v · γ3,w · γ4) where |t| = |u| ≤ l ∧max(|v|, |w|) ≤ l

γ → (t · γ3,u · γ4, v · γ3,w · γ4) where |t| = |u| ≤ l ∧max(|v|, |w|) ≤ l ∧ t ̸= u

γ → (t,u, v,w) where max(|t|, |u|, |v|, |w|) ≤ l ∧ t ̸= u

where t,u, v,w ∈ Σ∗ and γ = (γ1, γ2, γ3, γ4)

Lemma

L(DiffΣ,l, k) = {r(v,w) | v ̸= w ∈ Σ∗ ∧max(|v|, |w|) ≤ l(k+ 1)}

22

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

23

Dependency graphs of VTRATGs

Hardness results on VTRATGs require complicated grammars.
Typical grammars (such as I(G,n)) are much simpler.

This VTRATG G is almost “linear”:
A→ f(B) B→ f(C) C→ g(D) D→ c

Assign dependency graph D(G):
A− B− C− D

The treewidth tw(D(G)) measures how close it is to a tree:

• Let G be a connected graph with at least two vertices,
then tw(G) = 1 iff G is a tree

We have tw(D(I(G,n))) ≤ 2|γ|!

24

Dependency graphs of VTRATGs

Hardness results on VTRATGs require complicated grammars.
Typical grammars (such as I(G,n)) are much simpler.

This VTRATG G is almost “linear”:
A→ f(B) B→ f(C) C→ g(D) D→ c

Assign dependency graph D(G):
A− B− C− D

The treewidth tw(D(G)) measures how close it is to a tree:

• Let G be a connected graph with at least two vertices,
then tw(G) = 1 iff G is a tree

We have tw(D(I(G,n))) ≤ 2|γ|!

24

Dependency graphs of VTRATGs

Hardness results on VTRATGs require complicated grammars.
Typical grammars (such as I(G,n)) are much simpler.

This VTRATG G is almost “linear”:
A→ f(B) B→ f(C) C→ g(D) D→ c

Assign dependency graph D(G):
A− B− C− D

The treewidth tw(D(G)) measures how close it is to a tree:

• Let G be a connected graph with at least two vertices,
then tw(G) = 1 iff G is a tree

We have tw(D(I(G,n))) ≤ 2|γ|!

24

Dependency graphs of VTRATGs

Hardness results on VTRATGs require complicated grammars.
Typical grammars (such as I(G,n)) are much simpler.

This VTRATG G is almost “linear”:
A→ f(B) B→ f(C) C→ g(D) D→ c

Assign dependency graph D(G):
A− B− C− D

The treewidth tw(D(G)) measures how close it is to a tree:

• Let G be a connected graph with at least two vertices,
then tw(G) = 1 iff G is a tree

We have tw(D(I(G,n))) ≤ 2|γ|!

24

Dependency graphs of VTRATGs

Hardness results on VTRATGs require complicated grammars.
Typical grammars (such as I(G,n)) are much simpler.

This VTRATG G is almost “linear”:
A→ f(B) B→ f(C) C→ g(D) D→ c

Assign dependency graph D(G):
A− B− C− D

The treewidth tw(D(G)) measures how close it is to a tree:

• Let G be a connected graph with at least two vertices,
then tw(G) = 1 iff G is a tree

We have tw(D(I(G,n))) ≤ 2|γ|!
24

Treewidth-bounded dependency graphs

(tw ≤ k)-Membership: t ∈ L(G) P
(tw ≤ k)-Emptiness: L(G) = ∅ P
(tw ≤ k)-Containment: L(G1) ⊆ L(G2) coNP-complete
(tw ≤ k)-Disjointness: L(G1) ∩ L(G2) = ∅ coNP-complete
(tw ≤ k)-Equivalence: L(G1) = L(G2) coNP-complete

These complexity results apply to I(G,n) since we have
tw(D(I(G,n))) ≤ 2|γ|.

25

Induction grammars with bounded |γ|

(|γ| ≤ k)-Ind-Membership: t ∈ L(G) P
(|γ| ≤ k)-Ind-Emptiness: ∀n L(G,n) = ∅ P
(|γ| ≤ k)-Ind-Containment: ∀n L(G1,n) ⊆ L(G2,n) undec.
(|γ| ≤ k)-Ind-Disjointness: ∀n L(G1,n) ∩ L(G2,n) = ∅ undec.
(|γ| ≤ k)-Ind-Equivalence: ∀n L(G1,n) = L(G2,n) undec.

26

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

27

Problems on proofs

• Complexity results also transfer to proofs.

• Want to find simple induction proofs π(G) such that e.g.:

L(G(π(G1)),n) ⊆ L(G(π(G2)),n) ↔ H(π(G1)∗n) ⊆ H(π(G2)∗n)

• Main technical challenge: weakening inferences.
• in general L(G(π),n) ⊃ H(π∗

n)!

28

Non-erasing cut-reduction

Theorem (Hetzl, Straßburger 2012)
• For every Gentzen cut-reduction sequence π ⇝ π′, we
have L(G(π)) ⊇ L(G(π′)).

• If we did not perform grade reduction on weakenings,
then L(G(π)) = L(G(π′)).

Let ne⇝ be the non-erasing Gentzen cut-reduction relation, i.e.
where we do not reduce weakenings.

We can still define H(·) on ne⇝-NFs.

29

Decision problems on proofs

Problem (SIP-Containment).

Input: simple induction proofs π, π′.

Let π∗n, π′∗n be
ne⇝-NFs such that πn ne⇝ π∗n and π′n

ne⇝ π′∗n .

Output: is H(π∗n) ⊆ H(π′∗n) for all n?

Theorem
SIP-Containment is undecidable.

30

Introduction

Grammars

Complexity of decision problems

More tractable subclasses

Back to proofs

Conclusion

31

Conclusion

• Decision problems on induction grammars are generally
infeasible.
• Even restricting the size of the vectors.

• Open problem: how complex is Ind-Cover?
(or TRATG-Cover, resp.?)

Given a finite family of sets of terms (Ln)n∈I and K ≥ 0, is
there an induction grammar G with at most K productions
such that L(G,n) ⊇ Ln for all n?

32

	Introduction
	Grammars
	Complexity of decision problems
	More tractable subclasses
	Back to proofs
	Conclusion

