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Abstract. The Lean mathematical library mathlib is developed by a
community of users with very different backgrounds and levels of expe-
rience. To lower the barrier of entry for contributors and to lessen the
burden of reviewing contributions, we have developed a number of tools
for the library which check proof developments for subtle mistakes in the
code and generate documentation suited for our varied audience.
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1 Introduction

As a tool for managing mathematical knowledge, a proof assistant offers many
assurances. Once a result has been formalized, readers can confidently believe
that the relevant definitions are fully specified, the theorem is stated correctly,
and there are no logical gaps in the proof. A body of mathematical knowledge,
represented by formal definitions and proofs in a single theorem proving envi-
ronment, can be trusted to be coherent.

Logical coherence, however, is only one of many properties that one could
wish of a mathematical corpus. The ideal corpus can be modified, extended, and
queried by users who do not have expert knowledge of the entire corpus or the
underlying system. Proof assistant libraries do not always fare so well in this
respect. Most of the large mathematical libraries in existence are maintained
by expert users with a significant time cost. While external contributions are
easily checked for logical consistency, it typically takes manual review to check
that contributions cohere with the system in other ways—e.g., that lemmas
are correctly marked for use with a simplification tactic. It can be difficult or
impossible for outsiders to understand the library well enough to contribute
themselves.
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The mathlib library [15] is a corpus of formal mathematics, programming,
and tactics in the Lean proof assistant [16] that is managed and cultivated by a
community of users. The community encourages contributions from novice users,
and the rapid growth of the library has threatened to overwhelm its appointed
maintainers. The maintenance difficulty is compounded by the library’s extensive
use of type classes and context-dependent tactics. Misuse of these features is not
always easy to spot, but can lead to headaches in later developments.

To ease the burdens on new users and maintainers alike, we have incorpo-
rated into mathlib tools for checking meta-logical properties of declarations and
collecting, generating, and displaying documentation in an accessible way. The
use of these tools has already had a large impact on the community. We aim here
to explain the goals and design principles of these tools. While some details are
specific to Lean and mathlib, we believe that these considerations apply broadly
to libraries of formal mathematical knowledge.

2 Lean and mathlib

Lean offers a powerful metaprogramming framework that allows Lean programs
to access the system’s syntax and core components [8]. All of the linting tools
described in Sect. 3 are implemented in Lean, without the need for external
plugins or dependencies. They are distributed as part of the mathlib library.

Lean metaprograms are frequently used to implement tactics, which trans-
form the proof state of a declaration in progress. They can also implement top-
level commands, which interact with an environment outside the context of a
proof. Examples include #find, which searches for declarations matching a pat-
tern, and mk_simp_attribute, which defines a new collection of simplification
lemmas. Transient commands like #find, which do not modify the environment,
customarily start with #. Tactics and commands interact with the Lean environ-
ment and proof state through the tactic monad, which handles side effects and
failure conditions in a purely functional way. Finally, Lean supports tagging dec-
larations with attributes as a way to store metadata. Within the tactic monad,
metaprograms can access the list of declarations tagged with a certain attribute.

The mathlib project is run by a community of users and encourages contri-
butions from people with various backgrounds. The community includes many
domain experts, people with expert knowledge of the mathematics being formal-
ized but who are less familiar with the intricacies of the proof assistant. Linting
and documentation are useful for every user of every programming language, but
are especially helpful for such domain experts, since they often work on deep and
intricate implementations without a broad view of the library.

An example of this is seen in mathlib’s structure hierarchy [15, Sect. 4]. The
library extensively uses type classes to allow definitions and proofs to be stated
at the appropriate level of generality without duplication. Type classes are a
powerful tool, but seemingly innocent anti-patterns in their use can lead to
unstable and unusable developments. Even experienced users find it difficult to
avoid these patterns, and they easily slip through manual code review.
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The mathlib library and community are growing at a fast pace. As of May 15,
2020, the library contains over 170,000 lines of non-whitespace, non-comment
code, representing a 25% increase over five months, and 42,000 declarations,
excluding internal and automatically generated ones, a 23% increase. Contribu-
tions have been made by 85 people, a 16% increase over the same time period.
264 commits were made to the mathlib git repository in April 2020; while a
small number were automatically generated, each commit typically corresponds
to a single approved pull request. We display more statistics about the project’s
growth on the community website.3 The library covers a wide range of subject
matter, enough to serve as a base for numerous projects that have formalized
complex and recent mathematical topics [5, 7, 11].

3 Semantic Linting

Static program analysis, the act of analyzing computer code without running
the code, is widely used in many programming languages. An example of this is
linting, where source code is analyzed to flag faulty or suspicious code. Linters
warn the user about various issues, such as syntax errors, the use of undeclared
variables, calls to deprecated functions, spacing and formatting conventions, and
dangerous language features.

In typed languages like Lean, some of these errors are caught by the elabo-
rator or type checker. The system will raise an error if a proof or program has a
different type than the declared type or if a variable is used that has not been
introduced. However, other problems can still be present in developments that
have been accepted by Lean. It is also possible that there are problems with
the metadata of a declaration, such as its attributes or documentation. These
mistakes are often not obvious at the time of writing a declaration, but will
manifest at a later time. For example, an instance might be declared that will
never fire, or is likely to cause the type class inference procedure to loop.

We have implemented a package of semantic linters in mathlib to flag these
kinds of mistakes. These linters are semantic in the sense that they take as input
a fully elaborated declaration and its metadata. This is in contrast to a syntactic
linter, which takes as input the source code as plain text. The use of semantic
linters allows us to automatically check for many commonly made mistakes,
using the abstract syntax tree (the elaborated term in Lean’s type theory) for
the type or value of a declaration. Syntactic linters would allow for testing of e.g.
the formatting of the source code, but would not help with many of the tests we
want to perform.

The linters can be used to check one particular file or all files in mathlib.
Running the command #lint at any point in a file prints all the linter errors
up to that line. The command #lint_mathlib tests all imported declarations
in mathlib. Occasionally a declaration may be permitted to fail a lint test, for
example, if it takes an unused argument to satisfy a more general interface. Such

3 https://leanprover-community.github.io/mathlib stats.html
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/-- Reports definitions and constants that are missing doc strings -/
meta def doc_blame_report_defn : declaration → tactic (option string)
| (declaration.defn n _ _ _ _ _) := doc_string n >> return none <|>

return "def missing doc string"
| (declaration.cnst n _ _ _) := doc_string n >> return none <|> return

"constant missing doc string"
| _ := return none

/-- A linter for checking definition doc strings -/
@[linter, priority 1450] meta def linter.doc_blame : linter :=

{ test := λ d, mcond (bnot <$> has_attribute′ 8instance d.to_name)
(doc_blame_report_defn d) (return none),

no_errors_found := "No definitions are missing documentation.",
errors_found := "DEFINITIONS ARE MISSING DOCUMENTATION STRINGS" }

Fig. 1. A linter that tests whether a declaration has a documentation string.

lemmas are tagged with the attribute @[nolint], which takes a list of tests that
the declaration is allowed to fail. The continuous integration (CI) workflow of
mathlib automatically runs the linters on all of mathlib for every pull request
made to the library.

For some of the mistakes detected by our linters, it is reasonable to ask
whether they should even be allowed by the system in the first place. The core
Lean tool aims to be small, permissive, and customizable; enforcing our linter
rules at the system level would cut against this philosophy. Projects other than
mathlib may choose to follow different conventions, or may be small enough
to ignore problems that hinder scalability. Stricter rules, of course, can create
obstacles to finishing a project. By incorporating our checks into our library
instead of the core Lean system, we make them available to all projects that
depend on mathlib without forcing users to comply with them.

3.1 Linter Interface

A linter is a wrapper around a metaprogram with type declaration → tactic

(option string). Given an input declaration d, the test function returns none if
d passes the test and some error_msg if it fails. These test functions work within
the tactic monad in order to access the elaborator and environment, although
some are purely functional and none modify the environment. The type linter

bundles such a test function with formatting strings.

The package of linters is easily extended: a user simply defines and tags a
declaration of type linter. In Fig. 1 one sees the full definition of the doc_blame

linter, described in Sect. 3.2.

We have focused on implementing these linters with actionable warning mes-
sages. Since the errors they detect are often subtle and can seem mysterious to
novice users, we try to report as clearly as possible what should change in a
declaration in order to fix the warning.
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3.2 Simple Linters

A first selection of mathlib linters checks for simple mistakes commonly made
when declaring definition and theorems.

Duplicated namespaces. Declaration names in Lean are hierarchical, and it is
typical to build an interface for a declaration in its corresponding namespace.
For example, functions about the type list have names such as list.reverse

and list.sort. Lean’s namespace sectioning command inserts these prefixes au-
tomatically. However, users often write a lemma with a full name and then copy
it inside the namespace. This creates identifiers like list.list.reverse; it can
be difficult to notice the duplication without careful review. The dup_namespace

linter flags declarations whose names contain repeated components.

Definitions vs. theorems. Lean has separate declaration kinds for definitions
and theorems. The subtle differences relate to byte code generation and parallel
elaboration. It is nearly always the case that a declaration should be declared
as a theorem if and only if its type is a proposition. Because there are rare
exceptions to this, the system does not enforce it. The def_lemma linter checks
for this correspondence, so that the user must explicitly approve any exceptions.

Illegal constants. The Lean core library defines a > b to be b < a, and similarly
for a ≥ b. These statements are convertible, but some automation, including the
simplifier, operates only with respect to syntactic equality. For this reason, it is
convenient to pick a normal form for equivalent expressions. In mathlib, we prefer
theorems to be stated in terms of < instead of >. The ge_or_gt linter checks that
the disfavored constants do not appear in the types of declarations.

Unused arguments. A very common beginner mistake is to declare unneces-
sary arguments to a definition or theorem. Lean’s useful mechanisms for auto-
inserting parameters in namespaces and sections can unfortunately contribute
to this. The unused_arguments linter checks that each argument to a declaration
appears in either a subsequent argument or the declaration type or body.

Missing documentation. The mathlib documentation guidelines require every
definition to have a doc string (Sect. 4). Since doc strings are accessible by
metaprograms, we are able to enforce this property with a linter, called doc_blame

(Fig. 1). Missing doc strings are the most common linter error caught in CI.

3.3 Type Class Linters

Lean and mathlib make extensive use of type classes [21] for polymorphic dec-
larations. Of the 42,000 declarations in mathlib, 465 are type classes and 4600
are type class instances. In particular, type classes are used to manage the hi-
erarchy of mathematical structures. Their use allows definitions and theorems



6 F. van Doorn, G. Ebner, and R.Y. Lewis.

to be stated at high levels of generality and then applied in specific cases with-
out extra effort. Arguments to a declaration are marked as instance implicit by
surrounding them with square brackets. When this declaration is applied, Lean
runs a depth-first backward search through its database of instances to satisfy
the argument. Type classes are a powerful tool, but users often find the under-
lying algorithms opaque, and their misuse can lead to performance issues [20].
A collection of linters aims to warn users about this misuse.

Guiding type class resolution. Instances can be assigned a positive integer pri-
ority. During type class resolution the instances with a higher priority are tried
first. Priorities are optional, and in mathlib most instances are given the default
priority. Assigning priorities optimally is difficult. On the one hand, we want to
try instances that are used more frequently first, since they are most likely to be
applicable. On the other hand, we want to try instances that fail more quickly
first, so that the depth-first search does not waste time on unnecessary searches.

While we cannot automatically determine the optimal priority of instances,
there is one class of instances we want to apply last, namely the forgetful in-
stances. A forgetful instance is an instance that applies to every goal, like the
instance comm_group α → group α, which forgets that a commutative group is
commutative. Read backward as in the type class inference search, this instance
says that to inhabit group α it suffices to inhabit comm_group α.

Forgetful instances contrast with structural instances such as comm_group α

→ comm_group β → comm_group (α × β). We want to apply structural instances
before forgetful instances, because if the conclusion of a structural instance uni-
fies with the goal, it is almost always the desired instance. This is not the case
for forgetful instances, which are always applicable, even if the extra structure or
properties are not available for the type in question. In this case, the type class
inference algorithm will do an exhaustive search of the new instance problem,
which can take a long time to fail. The instance_priority linter enforces that
all forgetful instances have priority below the default.

Another potential problem with type class inference is the introduction of
metavariables in the instance search. Consider the following definition of an R-
module type class.

class module (R : Type u) (M : Type v) :=
(to_ring : ring R)
(to_add_comm_group : add_comm_group M)
(to_has_scalar : has_scalar R M)
/- some propositional fields omitted -/

If we make the projection module.to_ring an instance, we have an instance of
the form module R M → ring R. This means that during type class inference,
whenever we search for the instance ring α, we will apply module.to_ring and
then search for the instance module α ?m, where ?m is a metavariable. This type
class problem is likely to loop, since most module instances will apply in the case
that the second argument is a variable.
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To avoid this, in mathlib the type of module actually takes as arguments the
ring structure on R and the group structure on M. The declaration of module
looks more like this:

class module (R : Type u) (M : Type v) [ring R] [add_comm_group M] :=
(to_has_scalar : has_scalar R M)
/- some propositional fields omitted -/

Using this definition, there is no instance from modules to rings. Instead, the
ring structure of R is carried as an argument to the module structure on M. The
dangerous_instance raises a warning whenever an instance causes a new type
class problem that has a metavariable argument.

Misused instances and arguments. Misunderstanding the details of type class
inference can cause users to write instances that can never be applied. As an
example, consider the theorem which says that given a continuous ring homomor-
phism f between uniform spaces, the lift of f to the completion of its domain
is also a ring homomorphism. The predicate is_ring_hom f is a type class in
mathlib, and this theorem was originally written as a type class instance:

is_ring_hom f → continuous f → is_ring_hom (completion.map f)

However, continuous f is not a type class, and this argument does not appear
in the codomain is_ring_hom (completion.map f). There is no way for the type
class resolution mechanism to infer this argument and thus this instance will
never be applied. The impossible_instance linter checks declarations for this
pattern, warning if a non-type class argument does not appear elsewhere in the
type of the declaration.

A dual mistake to the one above is to mark an argument as instance im-
plicit even though its type is not a type class. Since there will be no type
class instances of this type, such an argument will never be inferable. The
incorrect_type_class_argument linter checks for this. While the linter is very
simple, it checks for a mistake that is difficult to catch in manual review, since
it requires complete knowledge of the mathlib instance database.

Missing and incorrect instances. Most theorems in mathlib are type-polymorphic,
but many hold only on inhabited types. (Readers used to HOL-based systems
should note that Lean’s type theory permits empty types, e.g. an inductive
type with no constructors.) Inhabitedness is given by a type class argument,
so in order to apply these theorems, the library must contain many instances
of the inhabited type class. The has_inhabited_instance linter checks, for each
concrete Type-valued declaration, that conditions are given to derive that the
type is inhabited.

The inhabited type class is itself Type-valued. One can computably obtain
a witness t : T from an instance of inhabited T; it is possible to have multiple
distinct (nonconvertible) instances of inhabited T. Sometimes the former prop-
erty is not necessary, and sometimes the latter property can create problems. For
instance, instances deriving inhabited T from has_zero T and has_one T would
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@[simp] lemma zero_add (x : N) : 0 + x = x := /- . . . -/

example (x : N) : 0 + (0 + x) = x := by simp

Fig. 2. Example usage of the simplifier.

lead to non-commuting diamonds in the type class hierarchy. To avoid this, math-
lib defines a weaker type class, nonempty, which is Prop-valued. Lean propositions
are proof-irrelevant, meaning that any two terms of the same Prop-valued type
are indistinguishable. Thus nonempty does not lead to non-commuting diamonds,
and is safe to use in situations where inhabited instances would cause trouble.

The inhabited_nonempty linter checks for declarations with inhabited argu-
ments that can be weakened to nonempty. Suppose that a Prop-valued declaration
takes an argument h : inhabited T. Since Lean uses dependent types, h may ap-
pear elsewhere in the type of the declaration. If it doesn’t, it can be weakened to
nonempty T, since the elimination principles are equivalent for Prop-valued tar-
gets. Weakening this argument makes the declaration more widely applicable.

3.4 Linters for Simplification Lemmas

Lean contains a simp tactic for (conditional) term rewriting. Similar tactics,
such as Isabelle’s simp [17], are found in other proof assistants. Users can tag
theorems using the @[simp] attribute. The theorems tagged with this attribute
are collectively called the simp set. The simp tactic uses lemmas from the simp
set, optionally with extra user-provided lemmas, to rewrite until it can no longer
progress. We say that such a fully simplified expression is in simp-normal form
with respect to the given simp set.

The simplifier is used widely: mathlib contains over 7000 simp lemmas, and
the string by simp occurs almost 5000 times, counting only a small fraction of its
invocations. However, care needs to be taken when formulating simp lemmas. For
example, if both a = b and b = a are added as simp lemmas, then the simplifier
will loop. Other mistakes are more subtle. We have integrated several linters
that aid in declaring effective simp lemmas.

Redundant simplification lemmas. We call a simp lemma redundant if the sim-
plifier will never use it for rewriting. This redundancy property depends on the
whole simp set: a simp lemma is not redundant by itself, but due to other simp
lemmas that break or subsume it. One way a simp lemma can be redundant is
if its left-hand side is not in simp-normal form.

Simplification proceeds from the inside out, starting with the arguments of a
function before simplifying the enclosing term. Given a term f (0 + a), Lean will
first simplify a, then it will simplify 0 + a to a using the simp lemma zero_add

(Fig. 2), and then finally simplify f a.
A lemma stating f (0 + x) = g x will never be used by the simplifier: the

left-hand side f (0 + x) contains the subterm 0 + x which is not in simp-normal
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form. Whenever the simplifier tries to use this lemma to rewrite a term, the
arguments to + have already been simplified, so this subterm can never match.

It is often not immediately clear whether a term is in simp-normal form. The
first version of the simp_nf linter only checked that the arguments of the left-
hand side of a simp lemma are in simp-normal form. This first version identified
more than one hundred lemmas across mathlib violating this condition. In some
cases, the lemma satisfied this condition in the file where it was declared, but
later files contained simp lemmas that simplified the left-hand side.

Simp lemmas can also be redundant if one simp lemma generalizes another
simp lemma. The simplifier always picks the last simp lemma that matches
the current term. (It is possible to override this order using the @[priority]

attribute.) If a simp lemma is followed by a more general version, then the first
lemma will never be used, such as length_singleton in the following example. It
is easy to miss this issue at first glance since [x] and x::xs look very different,
but [x] is actually parsed as x::[].

@[simp] lemma length_singleton : length [x] = 1 := rfl
@[simp] lemma length_cons : length (x::xs) = length xs + 1 := rfl

Both of these issues are checked by the simp_nf linter. It runs the simplifier
on the left-hand side of the simp lemma, and examines the proof term returned
by the simplifier. If the proof of the simplification of the left-hand side uses the
simp lemma itself, then the simp lemma is not redundant. In addition, we also
assume that the simp lemma is not redundant if the left-hand side does not
simplify at all, as is the case for conditional simp lemmas. Otherwise the linter
outputs a warning including the list of the simp lemmas that were used.

Commutativity lemmas. Beyond conditional term rewriting, Lean’s simplifier
also has limited support for ordered rewriting with commutativity lemmas such
as x + y = y + x. Naively applying such lemmas clearly leads to non-termination,
so the simplifier only uses these lemmas if the result is smaller as measured by
a total order on Lean terms. Rewriting with commutativity lemmas results in
nice normal forms for expressions without nested applications of the commuta-
tive operation. For example, it reliably solves the goal f (m + n) = f (n + m).
However, in the presence of nested applications, the results are unpredictable:

example (a b : Z) : (a + b) + -a = b := by simp /- works -/
example (a b : Z) : a + (b + -a) = b := by simp /- fails -/

The simp_comm linter checks that the simp set contains no commutativity lemmas.

Variables as head symbols. Due to the implementation of Lean’s simplifier, there
are some restrictions on simp lemmas. One restriction is that the head symbol
of the left hand side of a simp lemma must not be a variable. For example, in
the hypothetical (conditional) lemma

∀ f, is_homomorphism f → f (x + y) = f x + f y

the left-hand side has head symbol f, which is a bound variable, and therefore
the simplifier will not rewrite with this lemma. The simp_var_head linter ensures
that no such lemmas are accidentally added to the simp set.
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4 Documentation

Programming language documentation serves very different purposes for differ-
ent audiences, and proof assistant library documentation is no different. When
creating documentation for Lean and mathlib, we must address users who

– are new to Lean and unfamiliar with its syntax and paradigms;
– would like an overview of the contents of the library;
– would like to understand the design choices made in an existing theory;
– would like a quick reference to the interface for an existing theory;
– need to update existing theories to adjust to refactorings or updates;
– would like to learn to design and implement tactics or metaprograms; and
– would like a quick reference to the metaprogramming interface.

Many of these goals are best served with user manuals or tutorials [2]. Such
documents are invaluable, but there is a high cost to maintaining and updat-
ing them. They are most appropriate for material that does not often change,
such as the core system syntax and logical foundations. From the perspective
of library maintenance, we are particularly interested in internal documenta-
tion, that is, documentation which is directly written in the mathlib source files.
Since the library evolves very quickly, it is essential to automatically generate
as much of the reference material as possible. Furthermore, human-written text
should be close to what it describes, to make it harder for the description and
implementation to diverge.

We focus here on a few forms of this internal documentation. Module docu-
mentation, written at the top of a mathlib source file, is intended to describe the
theory developed in that file, justify its design decisions, and explain how to use
it in further developments. (A Lean source file is also called a module.) Declara-
tion doc strings are written immediately before definitions and theorems. They
describe the behavior or content of their subject declarations. In supported edi-
tors, these doc strings are automatically displayed when the cursor hovers over
a reference to the declaration. Decentralized documentation is not localized to a
particular line or file of the library, although it may originate in a certain place;
it is expected to be collected and displayed post hoc. An example of this is tactic
documentation: mathlib defines hundreds of interactive tactics in dozens of files,
but users expect to browse them all on a single manual page.

Some features of proof assistants (and of Lean and mathlib in particular)
encourage a different style of documentation from traditional programming lan-
guages. Since Lean propositions are proof-irrelevant, only the statement of a
theorem, not its proof term, can affect future declarations. Thus theorems are
self-documenting in a certain sense: the statement of a theorem gives a complete
account of its content, in contrast to a definition of type N → N, for example. We
require doc strings on all mathlib definitions but allow them to be omitted from
theorems. While it is often helpful to have the theorem restated or explained in
natural language, the manual burden of writing and maintaining these strings
for the large amount of simple lemmas in mathlib outweighs the gain of the nat-
ural language restatement. Nonetheless, doc strings are strongly encouraged on
important theorems and results with nonstandard statements or names.
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Fig. 3. The generated documentation entry for the normed_space type class. The im-
plicit arguments can be expanded by clicking on {. . .}.

4.1 Generation Pipeline

In the style of many popular programming languages, we generate and publish
HTML documentation covering the contents of mathlib. The generation is part
of mathlib’s continuous integration setup.

Perhaps unusually for this kind of tool, our generator does not examine the
mathlib source files. Instead, it builds a Lean environment that imports the entire
library and traverses it using a metaprogram. The metaprogramming interface
allows access to the file name, line number, and doc string for any particular dec-
laration, along with module doc strings. By processing a complete environment
we can display terms using notation declared later in the library, and include
automatically generated declarations that do not appear in the source. We can
also associate global information with declarations: for example, we can display
a list of instances for each type class.

The generation metaprogram produces a JSON file that contains all informa-
tion needed to print the module, declaration, and decentralized documentation.
A separate script processes this database into a searchable HTML website.4

4.2 Declaration Display

The majority of the documentation is oriented around modules. For each Lean
source file in mathlib, we create a single HTML page displaying the module
documentation and information for each declaration in that file. Declarations
appear in the same order as in the source, with an alphabetical index in a side
panel. For each declaration, we print various pieces of information (Fig. 3).

4 https://leanprover-community.github.io/mathlib docs/

https://leanprover-community.github.io/mathlib_docs/
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The declaration name is printed including its full namespace prefix. Lean
declarations have four possible kinds: theorem, definition, axiom, and constant.
We print the declaration kind and use it to color the border of the entry for a
visual cue. The type of the declaration is printed with implicit arguments hidden
by default. This gives an easy reference as to how the declaration can be applied.
Each type can be expanded to display all arguments. When a declaration has a
doc string, it is displayed beneath the type.

Lean represents the type former and constructors of an inductive type as
separate constants. We display them together, mirroring the Lean syntax for an
inductive definition. Similarly, we print the constructor and fields of a structure
mirroring the input syntax.

We do not display all of the attributes applied to a declaration, but show those
in a predefined list, including simp and class. For declarations tagged as type
classes, we display a collapsible list of instances of this class that appear elsewhere
in the library. For definitions, we display a collapsible list of the equational
lemmas that describe their associated reduction rules. We also link to the exact
location where the declaration is defined in the source code.

We believe that this display achieves many of our design goals. The module
documentation provides an overview of a particular theory for newcomers and
general implementation details for experts. The declaration display serves as
an API reference, displaying information concisely with more details readily
available. The same framework works to document both the formalization and
the metaprogramming components of mathlib.

4.3 Tactic Database

Lean proofs are often developed using tactics. Custom tactics can be written
in the language of Lean as metaprograms, and mathlib includes many such tac-
tics [15, Sect. 6]. It is essential for us to provide an index of the available tools
explaining when and how to use them. Tactic explanations are an example of
decentralized documentation. Their implementations appear in many different
files, interspersed with many other declarations, but users must see a single uni-
fied list. These same concerns apply to the commands defined in mathlib, as well
as to attributes and hole commands, which we do not discuss in this paper.

It is inconvenient to maintain a database of tactics separate from the library.
Since mathlib changes rapidly, such a database would likely diverge from the
library before long. In addition, the doc strings for tactics—which appear as
tooltips in supported editors—often contain the same text as a tactic database
entry. To avoid these issues, we provide a command add_tactic_doc that registers
a new tactic documentation entry. Another command retrieves all tactic doc
entries that exist in the current environment.

A tactic doc entry (Fig. 4) contains six fields. The command add_tactic_doc

takes this information as input. To avoid duplicating information, the description

field is optional, as this string has often already been written as a declaration
doc string. When description is empty, the command will source it from the
declaration named in inherit_description_from (if provided) or the declaration
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structure tactic_doc_entry :=
(entry_name : string)
(category : doc_category)
(decl_names : list name)
(tags : list string := [])
(description : string := "")
(inherit_description_from : option name := none)

add_tactic_doc
{ entry_name := "linarith",
category := doc_cagetory.tactic,
tags := ["arithmetic", "decision procedure"],

decl_names := [8tactic.interactive.linarith] }

Fig. 4. The information stored in a tactic documentation entry, and the standard way
to register an entry. The text associated with this entry will be the declaration doc
string of tactic.interactive.linarith.

named in decl_names (if this list has exactly one element). The HTML generation
tool links each description to its associated declarations.

The entry_name field titles the entry. This is typically the name of the tactic or
command, and is used as the header of the doc entry. The category field is either
tactic, command, hole_command, or attribute. These categories are displayed on
separate pages. The decl_names field lists the declarations associated with this
doc entry. Many entries document only a single tactic, in which case this list will
contain one entry, the implementation of this tactic.

The tags field contains an optional list of tags. They can be used to filter
entries in the generated display. The command can be called at any point in any
Lean file, but is typically used immediately after a new tactic is defined, to keep
the documentation close to the implementation in the source code. The HTML
display allows the user to filter declarations by tags—e.g. to view only tactics
related to arithmetic.

4.4 Library Notes

The interface surrounding a definition is often developed in the same file as that
definition. We typically explain the design decisions of a given module in the
file-level documentation. However, some design features have a more distributed
flavor. An example is the priority of type class instances (Sect. 3.3). There are
guidelines for choosing a priority for a new instance, and an explanation why
these guidelines make sense, but this explanation is not associated with any
particular module: it justifies design decisions made across dozens of files.

We use a mechanism that we call library notes (Fig. 5), inspired by a tech-
nique used in the Glasgow Haskell Compiler [14] project to document these
distributed design decisions. A library note is similar to a module doc string,
but it is identified by a name rather than a file and line. As with tactic doc en-
tries, we provide commands in mathlib to declare new library notes and retrieve
all existing notes.
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-- declare a library note about instance priority
/-- Certain instances always apply during type class resolution. . . -/
library_note "lower instance priority"

-- reference a library note in a declaration doc string
/-- see Note [lower instance priority] -/
@[priority 100]
instance t2_space.t1_space [t2_space α] : t1_space α := . . .

-- print all existing library notes
run_cmd get_library_notes >>= trace

Fig. 5. Library notes can be declared, referenced, and collected anywhere in mathlib.

The documentation processing tool generates an HTML page that displays
every library note in mathlib. When these notes are referenced in other docu-
mentation entries with the syntax Note [note name], they are linked to the entry
on the notes page. Library notes are also often referenced in standard comments
that are not displayed in documentation. These references are useful for library
developers to justify design decisions in places that do not face the public.

5 Conclusion

Although there are a growing number of large libraries of formal proofs, both
mathematical and otherwise, little has been written about best practices for
maintaining and documenting these libraries. Ringer et al [18] note the gap
between proof engineering and software engineering in this respect. Andronick [1]
describes the large-scale deployment of the seL4 verified microkernel, focusing on
the social factors that have led to its success; Bourke et al [4] describe technical
aspects of maintaining this project. Other discussions of large libraries [3, 10]
touch on similar topics. Wenzel [22] explains the infrastructure underlying the
Isabelle Archive of Formal Proofs (AFP), including progress toward building the
AFP with semantic document markup.

Sakaguchi [19] describes a tool for checking and validating the hierarchy of
mathematical structures in the Coq Mathematical Components library [13], a
task in the same spirit as our type class linters. Cohen, Sakaguchi, and Tassi [6]
implement a related tool which greatly simplifies changing this hierarchy.

It is hard to quantify the effect that our linters and documentation have had
on the mathlib community. Fixing issues identified by the instance_priority and
dangerous_instance linters led to performance boosts in the library. Removing
unusable instances and simplification lemmas has also improved performance
and decluttered trace output. More noticeable is the effect on the workload of
maintainers, who can now spend more review time on the deeper parts of library
submissions. Similarly, inexperienced contributors worry less about introducing
subtle mistakes into the library. Users at all levels report frequent use of the
HTML documentation, especially to find information that is not easily available
in an interactive Lean session, such as the list of instances of a given type class.
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So far we have only implemented the very basic sanity checks on simp lemmas
described in Sect. 3.4. There are also other properties of term rewriting systems
that we want for the simp set, such as confluence and termination. Kaliszyk and
Sternagel [12] have used completion of term rewriting systems to automatically
derive a simp set for the HOL Light standard library. We plan to implement a
more manual approach, where a linter detects the lack of local confluence and
prints a list of equations for the non-joinable critical pairs. It is then up to the
user to decide how to name, orient, and generalize these new equations.

The current linter framework considers each declaration locally, but we an-
ticipate the need for global tests. The simp_nf linter already goes beyond strictly
local checking: it considers the entire simp set. Another global linter could check
the termination of the simp set. This is a much harder challenge, since checking
termination is undecidable in general. We plan to investigate the integration of
external termination checkers such as AProVE [9].

While many of the features we present are specific to Lean, we believe that
the general considerations apply more broadly: automated validation and docu-
mentation seem essential for a sustainable and scalable library of formal proofs.
Especially in regard to documentation, there is a definite path for coordination
between libraries and systems, possibly aided by tools from the mathematical
knowledge management community.

Acknowledgments. We thank Jeremy Avigad and Jasmin Blanchette for com-
ments on a draft of this paper, and Bryan Gin-ge Chen for many contributions
to the mathlib documentation effort.
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