
A Unifying Splitting Framework

Gabriel Ebner
(joint work with Jasmin Blanchette and Sophie Tourret)

Vrije Universiteit Amsterdam

2021-06-09

Motivation

Saturation and redundancy

Splitting calculus

Local fairness and saturation

Local redundancy and locking

Given-clause procedure

Conclusion

Splitting

C ∨ D
C D

(if C and D are clauses with disjoint variables)

Splitting approaches

I Splitting without backtracking (Riazanov and Voronkov 2001)

I Labelled splitting (Fietzke and Weidenbach 2009)

I Avatar (Voronkov 2014)
I Very e�ective: solves 421 previously unsolved problems

Example

Avatar example in our notation

Motivation

Saturation and redundancy

Splitting calculus

Local fairness and saturation

Local redundancy and locking

Given-clause procedure

Conclusion

Saturation framework

I General conditions for completeness of saturation provers

I Bachmair and Ganzinger 2001 (handbook article)
I Waldmann et al. 2020

Formulas and consequences

I Abstract formulas F = {C,D, . . .}
I ⊥ ∈ F
I Consequence relation M |= C (M ⊆ F)

I {⊥} |= C
I {C} |= C
I M |= C implies M ∪ N |= C
I ∀C ∈ N (M |= C) and N |= C implies M |= C

I For example: F = set of first-order clauses
I {p(x) ∨ ¬q(x),q(c)} |= {p(c)}

Formulas and consequences

I Abstract formulas F = {C,D, . . .}
I ⊥ ∈ F
I Consequence relation M |= C (M ⊆ F)

I {⊥} |= C
I {C} |= C
I M |= C implies M ∪ N |= C
I ∀C ∈ N (M |= C) and N |= C implies M |= C

I For example: F = set of first-order clauses
I {p(x) ∨ ¬q(x),q(c)} |= {p(c)}

Formulas and consequences

I Abstract formulas F = {C,D, . . .}
I ⊥ ∈ F
I Consequence relation M |= C (M ⊆ F)

I {⊥} |= C
I {C} |= C
I M |= C implies M ∪ N |= C
I ∀C ∈ N (M |= C) and N |= C implies M |= C

I For example: F = set of first-order clauses
I {p(x) ∨ ¬q(x),q(c)} |= {p(c)}

Formula redundancy

I RedF : P(F)→ P(F)
I RedF(M) ⊆ RedF(M ∪ N)
I N \ RedF(N) |= ⊥ ⇐⇒ N |= ⊥
I RedF(M ∪ RedF(M)) = RedF(M)

I Standard redundancy criterion:
“redundant if entailed by smaller formulas”
C ∈ RedF(M) ⇐⇒ {D ∈ M | D ≺ C} |= C
I p(c) ∈ RedF({p(x)})
I p(t) ∈ RedF({t = s,p(s)}) (assuming s ≺ t)
I p(y) 6∈ RedF({p(x)})
I p(x) ∨ ¬p(x) ∈ RedF(∅)

Formula redundancy

I RedF : P(F)→ P(F)
I RedF(M) ⊆ RedF(M ∪ N)
I N \ RedF(N) |= ⊥ ⇐⇒ N |= ⊥
I RedF(M ∪ RedF(M)) = RedF(M)

I Standard redundancy criterion:
“redundant if entailed by smaller formulas”
C ∈ RedF(M) ⇐⇒ {D ∈ M | D ≺ C} |= C
I p(c) ∈ RedF({p(x)})
I p(t) ∈ RedF({t = s,p(s)}) (assuming s ≺ t)
I p(y) 6∈ RedF({p(x)})
I p(x) ∨ ¬p(x) ∈ RedF(∅)

Inference “redundancy”

I Inferences (Cn, . . . ,C1,D) ∈ Inf

I RedI : P(F)→ P(Inf)
I RedI(M) ⊆ RedI(M ∪ N)
I RedI(M ∪ RedF(M)) = RedI(M)
I D ∈ M implies (Cn, . . . ,C1,D) ∈ RedI(M)

I Inf \ RedI(·) = inferences that must be performed

Dynamic completeness

Theorem
If (Inf, (RedF,RedI)) is statically complete, then it is also dynamically complete.

Extension by labels

Motivation

Saturation and redundancy

Splitting calculus

Local fairness and saturation

Local redundancy and locking

Given-clause procedure

Conclusion

F∼

A-formulas

I Propositional variables V
I fml(·) : V→ F ∪ F∼

I A-formula: C←{a1, . . . ,an}
I C ∈ F
I ai ∈ A = V ∪ ¬V

I Intended interpretation: fml(a1) ∧ · · · ∧ fml(an)→ C

Interpretations

I J ⊆ A is a propositional interpretation
if it contains exactly one of v or ¬v for all v ∈ V

I C← A is enabled in J if A ⊆ J

I bC← Ac = C
I bNc ⊇ NJ = all enabled formulas in N

I ⊥← A is called a propositional clause
I ⊥← {a,¬b} means ¬fml(a) ∨ fml(b)!

I N⊥ = all propositional clauses in N

Consequence relation

I Assume consequence relations |= ⊆ |≈ on F
I M |= N if and only ifMJ |= bNc for every J in which N is enabled
I M |≈ N if and only if fml(J) ∪MJ |≈ bNc for every J in which N is enabled.

Redundancy

I Assume redundancy criterion (FRedF, FRedI) on F
I C ∈ FRedF(NJ) for all J ⊇ A; or
I exists C← B ∈ N such that B ⊂ A.

Inference rules

(Ci← Ai)ni=1 BaseD← A1 ∪ · · · ∪ An
(⊥← Ai)ni=1 Unsat⊥

where where

Cn · · · C1 FInfD
(⊥← Ai)ni=1 is unsat

Admissible inference rules

Theorem
The following are sound inference rules w.r.t. |≈,
and inferences with = are also simplification rules w.r.t. SRed:

C← A
Split

⊥← {¬a1, . . . ,¬an} ∪ A (Ci←{ai})ni=1

(⊥← Ai)ni=1 C← A ∪ B
Trim

(⊥← Ai)ni=1 C← B
fml(a)← A

Approx
⊥← {¬a} ∪ A

(where {⊥← Ai}ni=1 ∪ {⊥← A} |≈ {⊥← B}) · · ·

Motivation

Saturation and redundancy

Splitting calculus

Local fairness and saturation

Local redundancy and locking

Given-clause procedure

Conclusion

Levels of refinement

1. Base calculus (FInf, FRed)
2. Splitting calculus (SInf, SRed)
3. Model-guided prover MG
4. Locking prover L
5. Given-clause procedure AV

Standard completeness

Assume that (FInf, FRed) is statically complete.

Theorem
(SInf, SRed) is statically complete
(and hence also dynamically complete).

Local completeness

Definition
(Ni)i is locally fair if either

1. ⊥ ∈
⋃
iNi or

2. exists J |= (N∞)⊥ such that FInf((N∞)J) ⊆
⋃
i FRedI((Ni)J)

Theorem
If (Ni)i is locally fair and N0 |= {⊥}, then ⊥ ∈

⋃
iNi.

Model-guided prover

I Derivations (J0,N0) =⇒MG (J1,N1) =⇒MG · · ·

I Transition rules:

Derive (J, N]M) =⇒MG (J, N]M′) ifM⊆ SRedF(N]M′)
Switch (J, N) =⇒MG (J′, N) if J′ |= N⊥
Unsat (J, N) =⇒MG (J, N ∪ {⊥}) if N⊥ |≈ {⊥}

Topology on interpretations

I Equip the set of propositional interpretations with the product topology
I “topology of pointwise convergence”

I Clearly homeomorphic to the Cantor space 2ω
I Complete metric space
I Compact

I Every sequence (Ji)i has a convergent subsequence (J′i)i
I We call limi→∞ J′i a limit point1

I Evaluating assertions is continuous

1in analogy to other “limits” of clause sets

Motivation

Saturation and redundancy

Splitting calculus

Local fairness and saturation

Local redundancy and locking

Given-clause procedure

Conclusion

Local redundancy

I C ∈ SRedF(M) captures “global” redundancy
I can be removed permanently
I does not depend on model

I bCc ∈ FRedF(MJ) captures “local” redundancy
I can only be removed temporarily
I relative to current model

Locking prover

I Extra set for A-formulas that are locally redundant
depending on some finite subset of the model

Lift (J,N ,L) =⇒L (J
′,N ′ ∪ TUU,L \ U)

if (J,N) =⇒MG (J′,N ′) and U = {(B, C← A) ∈ L | B 6⊆ J′andA ⊆ J′}

Lock (J,N] {C← A},L) =⇒L (J,N ,L ∪ {(B, C← A)})
if B ⊆ J and C ∈ FRedF(NJ′) for all J′ ⊇ A ∪ B

Counterexamples

Completeness

Motivation

Saturation and redundancy

Splitting calculus

Local fairness and saturation

Local redundancy and locking

Given-clause procedure

Conclusion

Required and allowed inferences

Strongly finitary functions

Conditions

Motivation

Saturation and redundancy

Splitting calculus

Local fairness and saturation

Local redundancy and locking

Given-clause procedure

Conclusion

Conclusion

I Completeness of splitting provers depends on subtle details
I Clause-selection strategies that are complete for nonsplitting provers

are not necessarily complete for splitting provers
I Fairness not only requires a minimum of inferences

but also a maximum

I Completeness theorem for an Avatar-like given-clause procedure
I Requires a very very strong restriction on locking
I No restriction on the models

I Can we reduce the restriction on locking by
requiring “regular” sequences of propositional models?

	Motivation
	Saturation and redundancy
	Splitting calculus
	Local fairness and saturation
	Local redundancy and locking
	Given-clause procedure
	Conclusion

